A magnetic control reconfigurable coded electromagnetic absorbing metamaterial

[1]  Yue-dong Wu,et al.  Synergistically assembled nitrogen-doped reduced graphene oxide/multi-walled carbon nanotubes composite aerogels with superior electromagnetic wave absorption performance , 2021, Composites Science and Technology.

[2]  Binghui Xu,et al.  Controllable synthesis of Ni/NiO@porous carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth , 2021 .

[3]  Weixing Chen,et al.  Multi-components matching construction of α-[SiW11Mn(H2O)O39]6-/biacid co-doped polyaniline wrapped interstice skeletal NiCo2O4 for high-performance electromagnetic wave absorption , 2021 .

[4]  J. Qiu,et al.  Mie‐Resonance‐Based Metamaterials with Perfect Absorption in the Terahertz Frequency Range , 2021, physica status solidi (RRL) – Rapid Research Letters.

[5]  R. Tao,et al.  Deformation behavior and band gap switching function of 4D printed multi-stable metamaterials , 2021 .

[6]  S. K. Srivastava,et al.  Exfoliated graphite nanoplatelet (xGnP) filled EVA/EOC blends nanocomposites for efficient microwave absorption in the S-band (2–4 GHz) , 2021 .

[7]  Zhiping Yin,et al.  3D rampart-based dual-band metamaterial absorber with wide-incident-angle stability , 2021 .

[8]  Zilong Wang,et al.  Enhanced electromagnetic wave absorption of layered FeCo@carbon nanocomposites with a low filler loading , 2021 .

[9]  Hongjing Wu,et al.  Novel magnetic silicate composite for lightweight and efficient electromagnetic wave absorption , 2021 .

[10]  F. Meng,et al.  Two birds with one stone: Graphene oxide@sulfonated polyaniline nanocomposites towards high-performance electromagnetic wave absorption and corrosion protection , 2020 .

[11]  Z. Yao,et al.  3D printing of carbon black/polypropylene composites with excellent microwave absorption performance , 2020 .

[12]  Francesco Monticone,et al.  Can fast-light cloaks achieve arbitrarily broadband invisibility? , 2020, 2011.02333.

[13]  Xiaobo Chen,et al.  Maximizing the microwave absorption performance of polypyrrole by data-driven discovery , 2020 .

[14]  M. Hong,et al.  Metamaterial and nanomaterial electromagnetic wave absorbers: structures, properties and applications , 2020 .

[15]  Sungjoon Lim,et al.  Hybrid (3D and inkjet) printed electromagnetic pressure sensor using metamaterial absorber , 2020, Additive Manufacturing.

[16]  D. Fang,et al.  Broadband radar absorbing composites: Spatial scale effect and environmental adaptability , 2020 .

[17]  D. Zang,et al.  Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption , 2020 .

[18]  Jianguo Guan,et al.  Enhancement of low-frequency magnetic permeability and absorption by texturing flaky carbonyl iron particles , 2020 .

[19]  W. Lu,et al.  Rational design of hollow nanosphere γ-Fe2O3/MWCNTs composites with enhanced electromagnetic wave absorption , 2020 .

[20]  Peng Wang,et al.  Design and preparation of an ultrathin broadband metamaterial absorber with a magnetic substrate based on genetic algorithm , 2020 .

[21]  Zhuang Wu,et al.  Broadband metamaterial absorber for low-frequency microwave absorption in the S-band and C-band , 2020 .

[22]  Ruey-Bin Yang,et al.  Wideband square spiral metamaterial absorbers based on flaky carbonyl iron/epoxy composites , 2020 .

[23]  Mohammed M. Bait-Suwailam,et al.  A Dual-Band Flexible Frequency-Reconfigurable Metamaterial Absorber using Modified Split-Ring Resonator , 2019, 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM).

[24]  Sungjoon Lim,et al.  Mechanically actuated frequency reconfigurable metamaterial absorber , 2019, Sensors and Actuators A: Physical.

[25]  Hongjing Wu,et al.  Facile synthesis of ellipsoid-like MgCo2O4/Co3O4 composites for strong wideband microwave absorption application , 2019, Composites Part B: Engineering.

[26]  R. Boyd,et al.  Ultrabroadband 3D invisibility with fast-light cloaks , 2019, Nature Communications.

[27]  Jie Fu,et al.  Fabrication and mechanical behaviors of iron–nickel foam reinforced magnetorheological elastomer , 2019, Smart Materials and Structures.

[28]  Jie Fu,et al.  Versatile magnetorheological plastomer with 3D printability, switchable mechanics, shape memory, and self-healing capacity , 2019, Composites Science and Technology.

[29]  Sungjoon Lim,et al.  Ultrawideband Electromagnetic Absorber Using Sandwiched Broadband Metasurfaces , 2019, IEEE Antennas and Wireless Propagation Letters.

[30]  Zhuang Wu,et al.  Impedance matching for omnidirectional and polarization insensitive broadband absorber based on carbonyl iron powders , 2019, Journal of Magnetism and Magnetic Materials.

[31]  Lin Li,et al.  Vanadium dioxide-assisted broadband tunable terahertz metamaterial absorber , 2019, Scientific Reports.

[32]  Hui Luo,et al.  A novel two-layer honeycomb sandwich structure absorber with high-performance microwave absorption , 2019, Composites Part A: Applied Science and Manufacturing.

[33]  Lirui Wang,et al.  Synthesis of absorbing coating based on magnetorheological gel with controllable electromagnetic wave absorption properties , 2019, Smart Materials and Structures.

[34]  R. Zhong,et al.  Independently tunable multi-band and ultra-wide-band absorbers based on multilayer metal-graphene metamaterials. , 2019, Optics express.

[35]  Lai-fei Cheng,et al.  Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption , 2019, Carbon.

[36]  Hongjing Wu,et al.  Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. , 2019, Journal of colloid and interface science.

[37]  Tommaso Isernia,et al.  Volumetric Invisibility Cloaks Design Through Spectral Coverage Optimization , 2019, IEEE Access.

[38]  G. Wiederrecht,et al.  Broadband Metamaterial Absorbers , 2018, Advanced Optical Materials.

[39]  Sungjoon Lim,et al.  Thermal Frequency Reconfigurable Electromagnetic Absorber Using Phase Change Material , 2018, Sensors.

[40]  Zhihong Yang,et al.  Enhanced Low-Frequency Electromagnetic Properties of MOF-Derived Cobalt through Interface Design. , 2018, ACS applied materials & interfaces.

[41]  Wei-li Song,et al.  Multi-scale design of electromagnetic composite metamaterials for broadband microwave absorption , 2018, Composites Science and Technology.

[42]  Jun Cai,et al.  Aligning flaky FeSiAl particles with a two-dimensional rotating magnetic field to improve microwave-absorbing and shielding properties of composites , 2018, Journal of Magnetism and Magnetic Materials.

[43]  Sungjoon Lim,et al.  Broadband frequency-reconfigurable metamaterial absorber using switchable ground plane , 2018, Scientific Reports.

[44]  Kejun Lin,et al.  Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite , 2018, Powder Technology.

[45]  Sungjoon Lim,et al.  Design of Metamaterial Absorber using Eight-Resistive-Arm Cell for Simultaneous Broadband and Wide-Incidence-Angle Absorption , 2018, Scientific Reports.

[46]  Yonggang Xu,et al.  Design on the wide band absorber with low density based on the particle distribution , 2018 .

[47]  Jiafu Wang,et al.  Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb , 2018, Scientific Reports.

[48]  Jingwu Zheng,et al.  Low frequency and broadband metamaterial absorber with cross arrays and a flaked iron powder magnetic composite , 2018 .

[49]  Habiba Hafdallah Ouslimani,et al.  Broadband polarization-independent wide-angle and reconfigurable phase transition hybrid metamaterial absorber , 2017 .

[50]  Daining Fang,et al.  Radar stealth and mechanical properties of a broadband radar absorbing structure , 2017 .

[51]  Youwei Du,et al.  Composition Design and Structural Characterization of MOF-Derived Composites with Controllable Electromagnetic Properties , 2017 .

[52]  Guangsheng Deng,et al.  A Tunable Metamaterial Absorber Based on Liquid Crystal Intended for F Frequency Band , 2017, IEEE Antennas and Wireless Propagation Letters.

[53]  T. Cui,et al.  Broadband metamaterial for optical transparency and microwave absorption , 2017 .

[54]  Qiang Cheng,et al.  Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface. , 2017, Optics express.

[55]  F. Luo,et al.  Greatly enhanced microwave absorption properties of highly oriented flake carbonyl iron/epoxy resin composites under applied magnetic field , 2017, Journal of Materials Science.

[56]  Zhichuan J. Xu,et al.  Achieving tunable electromagnetic absorber via graphene/carbon sphere composites , 2016 .

[57]  Jie Fu,et al.  Ni-coated multi-walled carbon nanotubes enhanced the magnetorheological performance of magnetorheological gel , 2016, Journal of Nanoparticle Research.

[58]  Shuzhi Liu,et al.  Flower-like carbonyl iron powder modified by nanoflakes: Preparation and microwave absorption properties , 2015 .

[59]  Liyun Tang,et al.  Greatly enhanced microwave absorbing properties of planar anisotropy carbonyl-iron particle composites , 2015 .

[60]  Yongzhi Cheng,et al.  A planar polarization-insensitive metamaterial absorber , 2011 .

[61]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[62]  Linbo Zhang,et al.  Characterization and microwave resonance in nanocrystalline FeCoNi flake composite , 2007 .

[63]  Doyle,et al.  Effective cluster model of dielectric enhancement in metal-insulator composites. , 1990, Physical review. B, Condensed matter.