Strong Tractability of Quasi-Monte Carlo Quadrature Using Nets for Certain Banach Spaces
暂无分享,去创建一个
[1] A. Genz. Statistics Applications of Subregion Adaptive Multiple Numerical Integration , 1992 .
[2] Art B. Owen,et al. Monte Carlo, Quasi-Monte Carlo, and Randomized Quasi-Monte Carlo , 2000 .
[3] H. Niederreiter. Low-discrepancy and low-dispersion sequences , 1988 .
[4] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[5] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[6] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[7] A. Owen. Monte Carlo Variance of Scrambled Net Quadrature , 1997 .
[8] Fred J. Hickernell,et al. Optimal quadrature for Haar wavelet spaces , 2004, Math. Comput..
[9] Arnold J. Stromberg,et al. Number-theoretic Methods in Statistics , 1996 .
[10] Fred J. Hickernell,et al. The error bounds and tractability of quasi-Monte Carlo algorithms in infinite dimension , 2002, Math. Comput..
[11] Fred J. Hickernell,et al. On Tractability of Weighted Integration for Certain Banach Spaces of Functions , 2004 .
[12] B. Keister. Multidimensional quadrature algorithms , 1996 .
[13] H. Niederreiter,et al. Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .
[14] Fred J. Hickernell,et al. The Mean Square Discrepancy of Scrambled (t, s)-Sequences , 2000, SIAM J. Numer. Anal..
[15] A. Owen. Scrambled net variance for integrals of smooth functions , 1997 .
[16] Henryk Wozniakowski,et al. Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..
[17] Terje O. Espelid,et al. Numerical Integration: Recent Developments, Software and Applications. , 1993 .
[18] Xiaoqun Wang,et al. Strong tractability of multivariate integration using quasi-Monte Carlo algorithms , 2003, Math. Comput..
[19] Fred J. Hickernell,et al. The Strong Tractability of Multivariate Integration Using Lattice Rules , 2004 .
[20] Fred J. Hickernell,et al. On tractability of weighted integration over bounded and unbounded regions in Reals , 2004, Math. Comput..
[21] Fred J. Hickernell,et al. Strong tractability of integration using scrambled Niederreiter points , 2005, Math. Comput..
[22] Ian H. Sloan,et al. QMC Integration — Beating Intractability by Weighting the Coordinate Directions , 2002 .
[23] Art B. Owen,et al. Scrambling Sobol' and Niederreiter-Xing Points , 1998, J. Complex..
[24] A. Owen. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .
[25] Henryk Wozniakowski,et al. Finite-order weights imply tractability of multivariate integration , 2004, J. Complex..
[26] K. Entacher. Quasi-Monte Carlo methods for numerical integration of multivariate Haar series II , 1997 .
[27] D. Walnut. An Introduction to Wavelet Analysis , 2004 .
[28] S. Hansen. Rational Points on Curves over Finite Fields , 1995 .
[29] Rong-Xian Yue,et al. On the variance of quadrature over scrambled nets and sequences , 1999 .
[30] Fred J. Hickernell,et al. Integration and Approximation Based on Scramble Sampling in Arbitrary Dimensions , 2001, J. Complex..
[31] F. J. Hickernell,et al. An Algorithm-Driven Approach to Error Analysis for Multidimensional Integration , 2008 .
[32] Josef Dick,et al. Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces , 2005, J. Complex..
[33] S. Tezuka. Uniform Random Numbers: Theory and Practice , 1995 .
[34] K. Fang,et al. Number-theoretic methods in statistics , 1993 .
[35] E. Novak,et al. Foundations of Computational Mathematics: When are integration and discrepancy tractable? , 2001 .