Strong Tractability of Quasi-Monte Carlo Quadrature Using Nets for Certain Banach Spaces

We consider multivariate integration in the weighted spaces of functions with mixed first derivatives bounded in $L_p$ norms and the weighted coefficients introduced via $\ell_q$ norms, where $p,q\in[1,\infty]$. The integration domain may be bounded or unbounded. The worst‐case error and randomized error are investigated for quasi‐Monte Carlo quadrature rules. For the worst‐case setting the quadrature rule uses deterministic $((T_u),s)$‐sequences in base b, and for the randomized setting the quadrature rule uses randomly scrambled digital $((T_u),m,s)$‐nets in base b. Sufficient conditions are found under which multivariate integration is strongly tractable in the worst‐case and randomized settings, respectively. Similar results hold for the Banach spaces of finite‐order weights. Results presented in this article extend and improve upon those found previously.

[1]  A. Genz Statistics Applications of Subregion Adaptive Multiple Numerical Integration , 1992 .

[2]  Art B. Owen,et al.  Monte Carlo, Quasi-Monte Carlo, and Randomized Quasi-Monte Carlo , 2000 .

[3]  H. Niederreiter Low-discrepancy and low-dispersion sequences , 1988 .

[4]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[5]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[6]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[7]  A. Owen Monte Carlo Variance of Scrambled Net Quadrature , 1997 .

[8]  Fred J. Hickernell,et al.  Optimal quadrature for Haar wavelet spaces , 2004, Math. Comput..

[9]  Arnold J. Stromberg,et al.  Number-theoretic Methods in Statistics , 1996 .

[10]  Fred J. Hickernell,et al.  The error bounds and tractability of quasi-Monte Carlo algorithms in infinite dimension , 2002, Math. Comput..

[11]  Fred J. Hickernell,et al.  On Tractability of Weighted Integration for Certain Banach Spaces of Functions , 2004 .

[12]  B. Keister Multidimensional quadrature algorithms , 1996 .

[13]  H. Niederreiter,et al.  Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .

[14]  Fred J. Hickernell,et al.  The Mean Square Discrepancy of Scrambled (t, s)-Sequences , 2000, SIAM J. Numer. Anal..

[15]  A. Owen Scrambled net variance for integrals of smooth functions , 1997 .

[16]  Henryk Wozniakowski,et al.  Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..

[17]  Terje O. Espelid,et al.  Numerical Integration: Recent Developments, Software and Applications. , 1993 .

[18]  Xiaoqun Wang,et al.  Strong tractability of multivariate integration using quasi-Monte Carlo algorithms , 2003, Math. Comput..

[19]  Fred J. Hickernell,et al.  The Strong Tractability of Multivariate Integration Using Lattice Rules , 2004 .

[20]  Fred J. Hickernell,et al.  On tractability of weighted integration over bounded and unbounded regions in Reals , 2004, Math. Comput..

[21]  Fred J. Hickernell,et al.  Strong tractability of integration using scrambled Niederreiter points , 2005, Math. Comput..

[22]  Ian H. Sloan,et al.  QMC Integration — Beating Intractability by Weighting the Coordinate Directions , 2002 .

[23]  Art B. Owen,et al.  Scrambling Sobol' and Niederreiter-Xing Points , 1998, J. Complex..

[24]  A. Owen Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .

[25]  Henryk Wozniakowski,et al.  Finite-order weights imply tractability of multivariate integration , 2004, J. Complex..

[26]  K. Entacher Quasi-Monte Carlo methods for numerical integration of multivariate Haar series II , 1997 .

[27]  D. Walnut An Introduction to Wavelet Analysis , 2004 .

[28]  S. Hansen Rational Points on Curves over Finite Fields , 1995 .

[29]  Rong-Xian Yue,et al.  On the variance of quadrature over scrambled nets and sequences , 1999 .

[30]  Fred J. Hickernell,et al.  Integration and Approximation Based on Scramble Sampling in Arbitrary Dimensions , 2001, J. Complex..

[31]  F. J. Hickernell,et al.  An Algorithm-Driven Approach to Error Analysis for Multidimensional Integration , 2008 .

[32]  Josef Dick,et al.  Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces , 2005, J. Complex..

[33]  S. Tezuka Uniform Random Numbers: Theory and Practice , 1995 .

[34]  K. Fang,et al.  Number-theoretic methods in statistics , 1993 .

[35]  E. Novak,et al.  Foundations of Computational Mathematics: When are integration and discrepancy tractable? , 2001 .