Ultrafast and Broadband Tuning of Resonant Optical Nanostructures Using Phase‐Change Materials

Reference EPFL-ARTICLE-225235doi:10.1002/adom.201600079View record in Web of Science Record created on 2017-01-24, modified on 2017-01-24

[1]  L. Rayleigh III. Note on the remarkable case of diffraction spectra described by Prof. Wood , 1907 .

[2]  U. Fano Some Theoretical Considerations on Anomalous Diffraction Gratings , 1936 .

[3]  G. W. Ford,et al.  Electromagnetic interactions of molecules with metal surfaces , 1984 .

[4]  Thomas W. Ebbesen,et al.  Surface plasmons enhance optical transmission through subwavelength holes , 1998 .

[5]  P. Berini,et al.  Experimental observation of plasmon polariton waves supported by a thin metal film of finite width. , 2000, Optics letters.

[6]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[7]  F. G. D. Abajo,et al.  Spontaneous light emission in complex nanostructures , 2004 .

[8]  W. A. Murray,et al.  Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. , 2004, Physical review letters.

[9]  Matthias Wuttig,et al.  Towards a universal memory? , 2005, Nature materials.

[10]  Site and lattice resonances in metallic hole arrays. , 2005, Optics express.

[11]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[12]  F. G. D. Abajo Colloquium: Light scattering by particle and hole arrays , 2007, 0903.1671.

[13]  H. Lezec,et al.  All-optical modulation by plasmonic excitation of CdSe quantum dots , 2007 .

[14]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[15]  M. Giersig,et al.  Self-assembly of latex particles for the creation of nanostructures with tunable plasmonic properties , 2011 .

[16]  O. Keller Quantum Theory of Near-Field Electrodynamics , 2011 .

[17]  F. J. García de abajo,et al.  Plasmon scattering from single subwavelength holes. , 2012, Physical review letters.

[18]  W. J. Wang,et al.  Breaking the Speed Limits of Phase-Change Memory , 2012, Science.

[19]  A. E. Cetin,et al.  Plasmonically Enhanced Vibrational Biospectroscopy Using Low‐Cost Infrared Antenna Arrays by Nanostencil Lithography , 2013 .

[20]  A. E. Cetin,et al.  Thermal Tuning of Surface Plasmon Polaritons Using Liquid Crystals , 2013 .

[21]  V. Pruneri,et al.  Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials , 2013 .

[22]  Federico Capasso,et al.  Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. , 2013, Optics letters.

[23]  C. David Wright,et al.  An optoelectronic framework enabled by low-dimensional phase-change films , 2014, Nature.

[24]  Thomas Taubner,et al.  Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses , 2014 .

[25]  C. David Wright,et al.  On‐Chip Photonic Memory Elements Employing Phase‐Change Materials , 2014, Advanced materials.

[26]  Valerio Pruneri,et al.  Time-domain separation of optical properties from structural transitions in resonantly bonded materials. , 2014, Nature materials.

[27]  H. Atwater,et al.  Electrochemical Tuning of the Dielectric Function of Au Nanoparticles , 2015 .