Wrong transition and measurement models in power system state estimation
暂无分享,去创建一个
[1] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[2] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[3] James V. Candy,et al. Bayesian Signal Processing , 2009 .
[4] K. Schneider,et al. Feasibility studies of applying Kalman Filter techniques to power system dynamic state estimation , 2007, 2007 International Power Engineering Conference (IPEC 2007).
[5] Dan Simon,et al. Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .
[6] Dariusz Janiszewski,et al. Particle Filter Approach for Permanent Magnet Synchronous Motor State Estimation , 2014 .
[7] Sebastian Thrun,et al. Probabilistic robotics , 2002, CACM.
[8] O. Cappé,et al. Population Monte Carlo , 2004 .
[9] Piotr Kozierski,et al. Resampling in particle filtering : comparison , 2013 .
[10] Gustavo Valverde,et al. Unscented kalman filter for power system dynamic state estimation , 2011 .
[11] Shyh-Jier Huang,et al. Application of a Robust Algorithm for Dynamic State Estimation of a Power System , 2002 .
[12] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[13] C. Cornell,et al. Adaptive Importance Sampling , 1990 .
[14] Nando de Freitas,et al. Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.
[15] Thomas B. Schön,et al. System identification of nonlinear state-space models , 2011, Autom..
[16] A. G. Expósito,et al. Power system state estimation : theory and implementation , 2004 .