Sharp pointwise-in-time error estimate of L1 scheme for nonlinear subdiffusion equations

Abstract. An essential feature of the subdiffusion equations with the α-order time fractional derivative is the weak singularity at the initial time. The weak regularity of the solution is usually characterized by a regularity parameter σ ∈ (0, 1)∪ (1, 2). Under this general regularity assumption, we here obtain the pointwise-in-time error estimate of the widely used L1 scheme for nonlinear subdiffusion equations. To the end, we present a refined discrete fractional-type Grönwall inequality and a rigorous analysis for the truncation errors. Numerical experiments are provided to demonstrate the effectiveness of our theoretical analysis.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Mariam Al-Maskari,et al.  Numerical Approximation of Semilinear Subdiffusion Equations with Nonsmooth Initial Data , 2019, SIAM J. Numer. Anal..

[3]  Natalia Kopteva,et al.  Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions , 2017, Math. Comput..

[4]  Martin Stynes,et al.  Convergence in Positive Time for a Finite Difference Method Applied to a Fractional Convection-Diffusion Problem , 2017, Comput. Methods Appl. Math..

[5]  Bangti Jin,et al.  ON TWO SCHEMES FOR FRACTIONAL DIFFUSION AND DIFFUSION-WAVE EQUATIONS , 2014 .

[6]  William McLean,et al.  Time-stepping error bounds for fractional diffusion problems with non-smooth initial data , 2014, J. Comput. Phys..

[7]  S. Wearne,et al.  Fractional Reaction-Diffusion , 2000 .

[8]  Bangti Jin,et al.  Numerical Analysis of Nonlinear Subdiffusion Equations , 2017, SIAM J. Numer. Anal..

[9]  Bangti Jin,et al.  Correction of High-Order BDF Convolution Quadrature for Fractional Evolution Equations , 2017, SIAM J. Sci. Comput..

[10]  Bangti Jin,et al.  An analysis of the L1 Scheme for the subdiffusion equation with nonsmooth data , 2015, 1501.00253.

[11]  Jiwei Zhang,et al.  Unconditionally Convergent L1-Galerkin FEMs for Nonlinear Time-Fractional Schrödinger Equations , 2017, SIAM J. Sci. Comput..

[12]  Wanrong Cao,et al.  Implicit-Explicit Difference Schemes for Nonlinear Fractional Differential Equations with Nonsmooth Solutions , 2016, SIAM J. Sci. Comput..

[13]  Natalia Kopteva,et al.  Error analysis of an L2-type method on graded meshes for a fractional-order parabolic problem , 2019, Math. Comput..

[14]  Jose L. Gracia,et al.  Error Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation , 2017, SIAM J. Numer. Anal..

[15]  R. Gorenflo,et al.  Time Fractional Diffusion: A Discrete Random Walk Approach , 2002 .

[16]  Jiwei Zhang,et al.  Analysis of $L1$-Galerkin FEMs for time-fractional nonlinear parabolic problems , 2016, 1612.00562.

[17]  Bangti Jin,et al.  Numerical methods for time-fractional evolution equations with nonsmooth data: A concise overview , 2018, Computer Methods in Applied Mechanics and Engineering.

[18]  Jiwei Zhang,et al.  Sharp Error Estimate of the Nonuniform L1 Formula for Linear Reaction-Subdiffusion Equations , 2018, SIAM J. Numer. Anal..

[19]  Omar M. Knio,et al.  Regularity theory for time-fractional advection-diffusion-reaction equations , 2019, Comput. Math. Appl..

[20]  C. Lubich Convolution quadrature and discretized operational calculus. I , 1988 .

[21]  Zhimin Zhang,et al.  Linearized Galerkin FEMs for Nonlinear Time Fractional Parabolic Problems with Non-smooth Solutions in Time Direction , 2019, J. Sci. Comput..

[22]  Kassem Mustapha,et al.  Time-stepping discontinuous Galerkin methods for fractional diffusion problems , 2014, Numerische Mathematik.

[23]  Yubin Yan,et al.  An Analysis of the Modified L1 Scheme for Time-Fractional Partial Differential Equations with Nonsmooth Data , 2018, SIAM J. Numer. Anal..

[24]  Jiwei Zhang,et al.  A Discrete Grönwall Inequality with Applications to Numerical Schemes for Subdiffusion Problems , 2018, SIAM J. Numer. Anal..

[25]  K. Mustapha,et al.  Well-posedness of time-fractional advection-diffusion-reaction equations , 2018, Fractional Calculus and Applied Analysis.