暂无分享,去创建一个
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] Mariam Al-Maskari,et al. Numerical Approximation of Semilinear Subdiffusion Equations with Nonsmooth Initial Data , 2019, SIAM J. Numer. Anal..
[3] Natalia Kopteva,et al. Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions , 2017, Math. Comput..
[4] Martin Stynes,et al. Convergence in Positive Time for a Finite Difference Method Applied to a Fractional Convection-Diffusion Problem , 2017, Comput. Methods Appl. Math..
[5] Bangti Jin,et al. ON TWO SCHEMES FOR FRACTIONAL DIFFUSION AND DIFFUSION-WAVE EQUATIONS , 2014 .
[6] William McLean,et al. Time-stepping error bounds for fractional diffusion problems with non-smooth initial data , 2014, J. Comput. Phys..
[7] S. Wearne,et al. Fractional Reaction-Diffusion , 2000 .
[8] Bangti Jin,et al. Numerical Analysis of Nonlinear Subdiffusion Equations , 2017, SIAM J. Numer. Anal..
[9] Bangti Jin,et al. Correction of High-Order BDF Convolution Quadrature for Fractional Evolution Equations , 2017, SIAM J. Sci. Comput..
[10] Bangti Jin,et al. An analysis of the L1 Scheme for the subdiffusion equation with nonsmooth data , 2015, 1501.00253.
[11] Jiwei Zhang,et al. Unconditionally Convergent L1-Galerkin FEMs for Nonlinear Time-Fractional Schrödinger Equations , 2017, SIAM J. Sci. Comput..
[12] Wanrong Cao,et al. Implicit-Explicit Difference Schemes for Nonlinear Fractional Differential Equations with Nonsmooth Solutions , 2016, SIAM J. Sci. Comput..
[13] Natalia Kopteva,et al. Error analysis of an L2-type method on graded meshes for a fractional-order parabolic problem , 2019, Math. Comput..
[14] Jose L. Gracia,et al. Error Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation , 2017, SIAM J. Numer. Anal..
[15] R. Gorenflo,et al. Time Fractional Diffusion: A Discrete Random Walk Approach , 2002 .
[16] Jiwei Zhang,et al. Analysis of $L1$-Galerkin FEMs for time-fractional nonlinear parabolic problems , 2016, 1612.00562.
[17] Bangti Jin,et al. Numerical methods for time-fractional evolution equations with nonsmooth data: A concise overview , 2018, Computer Methods in Applied Mechanics and Engineering.
[18] Jiwei Zhang,et al. Sharp Error Estimate of the Nonuniform L1 Formula for Linear Reaction-Subdiffusion Equations , 2018, SIAM J. Numer. Anal..
[19] Omar M. Knio,et al. Regularity theory for time-fractional advection-diffusion-reaction equations , 2019, Comput. Math. Appl..
[20] C. Lubich. Convolution quadrature and discretized operational calculus. I , 1988 .
[21] Zhimin Zhang,et al. Linearized Galerkin FEMs for Nonlinear Time Fractional Parabolic Problems with Non-smooth Solutions in Time Direction , 2019, J. Sci. Comput..
[22] Kassem Mustapha,et al. Time-stepping discontinuous Galerkin methods for fractional diffusion problems , 2014, Numerische Mathematik.
[23] Yubin Yan,et al. An Analysis of the Modified L1 Scheme for Time-Fractional Partial Differential Equations with Nonsmooth Data , 2018, SIAM J. Numer. Anal..
[24] Jiwei Zhang,et al. A Discrete Grönwall Inequality with Applications to Numerical Schemes for Subdiffusion Problems , 2018, SIAM J. Numer. Anal..
[25] K. Mustapha,et al. Well-posedness of time-fractional advection-diffusion-reaction equations , 2018, Fractional Calculus and Applied Analysis.