Statistical evaluation of Hidden Markov Models topologies, based on industrial synthetic model

Abstract Prediction of physical particular phenomenon is based on knowledges of the phenomenon. Theses knowledges help us to conceptualize this phenomenon throw different models. Hidden Markov Models (HMM) can be used for modeling complex processes. We use this kind of models as tool for fault diagnosis systems. Nowadays, industrial robots living in stochastic environment need faults detection to prevent any breakdown. In this paper, we wish to evaluate three Hidden Markov Models topologies of Vrignat et al. (2010), based on upstream industrial synthetic Hidden Markov Model. Our synthetic model gives us simulation such as real industrial Computerized Maintenance Management System. Evaluation is made by two statistical tests. Therefore, we evaluate two learning algorithms: Baum-Welch Baum et al. (1970) and segmental K-means Viterbi (1967). We also evaluate two different distributions for stochastic generation of synthetic HMM labels. After a brief introduction on Hidden Markov Model, we present some statistical tests used in current literature for model selection. Afterwards, we support our study by an example of simulated industrial process by using synthetic HMM. This paper examines stochastic parameters of the various tested models on this process, for finally come up with the most relevant model and the best learning algorithm for our predictive maintenance system.

[1]  Pascal Vrignat,et al.  Génération d'indicateurs de maintenance par une approche semi-paramétrique et par une approche markovienne , 2010 .

[2]  Zvi Drezner,et al.  A Modified Kolmogorov–Smirnov Test for Normality , 2010, Commun. Stat. Simul. Comput..

[3]  Welch Bl THE GENERALIZATION OF ‘STUDENT'S’ PROBLEM WHEN SEVERAL DIFFERENT POPULATION VARLANCES ARE INVOLVED , 1947 .

[4]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .

[5]  L Held,et al.  A Score Regression Approach to Assess Calibration of Continuous Probabilistic Predictions , 2010, Biometrics.

[6]  Bernard Bercu,et al.  Modélisation stochastique et simulation - Cours et applications , 2007 .

[7]  Jun Wang,et al.  Model Selection for Linear Mixed Models Using Predictive Criteria , 2009, Commun. Stat. Simul. Comput..

[8]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[9]  Frédéric Kratz,et al.  Evaluation of relevance of stochastic parameters on Hidden Markov Models , 2011 .

[10]  Frédéric Kratz,et al.  Use of HMM for evaluation of maintenance activities , 2010 .

[11]  J. Steinebach E. L. Lehmann, J. P. Romano: Testing statistical hypotheses , 2006 .

[12]  Jean-René Barra Testing Statistical Hypotheses , 1981 .

[13]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[14]  Malik Ghallab,et al.  Robot introspection through learned hidden Markov models , 2006, Artif. Intell..

[15]  Van Nostrand,et al.  Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm , 1967 .

[16]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[17]  Biing-Hwang Juang,et al.  The segmental K-means algorithm for estimating parameters of hidden Markov models , 1990, IEEE Trans. Acoust. Speech Signal Process..

[18]  B. L. Welch ON THE COMPARISON OF SEVERAL MEAN VALUES: AN ALTERNATIVE APPROACH , 1951 .