Testing equivalence as a bisimulation equivalence

In this paper we show how the testing equivalences and preorders on transition systems may be interpreted as instances of generalized bisimulation equivalences and prebisimulation preorders. The characterization relies on defining transformations on the transition systems in such a way that the testing relations on the original systems correspond to (pre)bisimulation relations on the altered systems. On the basis of these results, it is possible to use algorithms for determining the (pre)bisimulation relations in the case of finite-state transition systems to compute the testing relations.

[1]  Matthew Hennessy,et al.  Acceptance trees , 1985, JACM.

[2]  Rocco De Nicola,et al.  Testing Equivalences for Processes , 1984, Theor. Comput. Sci..

[3]  Albert R. Meyer,et al.  Bisimulation can't be traced , 1988, POPL '88.

[4]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[5]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[6]  Rance Cleaveland,et al.  A Semantics Based Verification Tool for Finite State Systems , 1989, PSTV.

[7]  Matthew Hennessy,et al.  Algebraic theory of processes , 1988, MIT Press series in the foundations of computing.

[8]  Kim G. Larsen,et al.  Bisimulation through probabilistic testing (preliminary report) , 1989, POPL '89.

[9]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[10]  Scott A. Smolka,et al.  CCS expressions, finite state processes, and three problems of equivalence , 1983, PODC '83.

[11]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[12]  Robin Milner,et al.  Calculi for Synchrony and Asynchrony , 1983, Theor. Comput. Sci..

[13]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[14]  Matthew Hennessy,et al.  A Term Model for Synchronous Processes , 1981, Inf. Control..

[15]  Robin Milner,et al.  Algebraic laws for nondeterminism and concurrency , 1985, JACM.

[16]  C. A. R. Hoare,et al.  Communicating Sequential Processes (Reprint) , 1983, Commun. ACM.

[17]  D. J. Walker,et al.  Bisimulations and divergence , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[18]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[19]  Rance Cleaveland,et al.  The Concurrency Workbench , 1990, Automatic Verification Methods for Finite State Systems.

[20]  D. J. Walker,et al.  Bisimulation and Divergence , 1990, Inf. Comput..

[21]  Robert E. Tarjan,et al.  Three Partition Refinement Algorithms , 1987, SIAM J. Comput..