Comparing the randomized benchmarking figure with the average infidelity of a quantum gate-set

Randomized benchmarking (RB) is a popular procedure used to gauge the performance of a set of gates useful for quantum information processing (QIP). Recently, Proctor et al. [Phys. Rev. Lett. 119, 130502 (2017)] demonstrated a practically relevant example where the RB measurements give a number $r$ very different from the actual average gate-set infidelity $\epsilon$, despite past theoretical assurances that the two should be equal. Here, we derive formulas for $\epsilon$, and for $r$ from the RB protocol, in a manner permitting easy comparison of the two. We show in general that, indeed, $r\neq \epsilon$, i.e., RB does not measure average infidelity, and, in fact, neither one bounds the other. We give several examples, all plausible in real experiments, to illustrate the differences in $\epsilon$ and $r$. Many recent papers on experimental implementations of QIP have claimed the ability to perform high-fidelity gates because they demonstrated small $r$ values using RB. Our analysis shows that such a statement from RB alone has to be interpreted with caution.

[1]  Joseph Emerson,et al.  Scalable protocol for identification of correctable codes , 2007, 0710.1900.

[2]  S. Olmschenk,et al.  Randomized benchmarking of atomic qubits in an optical lattice , 2010, 1008.2790.

[3]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[4]  Raymond Laflamme,et al.  Practical experimental certification of computational quantum gates using a twirling procedure. , 2011, Physical review letters.

[5]  R. Laflamme,et al.  Randomized benchmarking of quantum gates implemented by electron spin resonance. , 2015, Journal of magnetic resonance.

[6]  M Saffman,et al.  Randomized benchmarking of single-qubit gates in a 2D array of neutral-atom qubits. , 2015, Physical review letters.

[7]  Jens Koch,et al.  Randomized benchmarking and process tomography for gate errors in a solid-state qubit. , 2008, Physical review letters.

[8]  Kenneth Rudinger,et al.  What Randomized Benchmarking Actually Measures. , 2017, Physical review letters.

[9]  Mark A. Eriksson,et al.  Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet , 2016, Proceedings of the National Academy of Sciences.

[10]  Christoph Dankert,et al.  Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .

[11]  M. Veldhorst,et al.  Nonexponential fidelity decay in randomized benchmarking with low-frequency noise , 2015, 1502.05119.

[12]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[13]  Michael J. Biercuk,et al.  Effect of noise correlations on randomized benchmarking , 2015, 1504.05307.

[14]  R. Laflamme,et al.  Randomized benchmarking of single- and multi-qubit control in liquid-state NMR quantum information processing , 2008, 0808.3973.

[15]  Raymond Laflamme,et al.  Symmetrized Characterization of Noisy Quantum Processes , 2007, Science.

[16]  S. Flammia,et al.  Logical Randomized Benchmarking , 2017, 1702.03688.

[17]  Jonas Helsen,et al.  Multiqubit randomized benchmarking using few samples , 2017, Physical Review A.

[18]  Christopher Ferrie,et al.  Accelerated randomized benchmarking , 2014, 1404.5275.

[19]  Steven T. Flammia,et al.  Randomized benchmarking with confidence , 2014, 1404.6025.

[20]  E. Knill,et al.  Single-qubit-gate error below 10 -4 in a trapped ion , 2011, 1104.2552.

[21]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[22]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[23]  D. Petz,et al.  Contractivity of positive and trace-preserving maps under Lp norms , 2006, math-ph/0601063.

[24]  Shelby Kimmel,et al.  Robust Extraction of Tomographic Information via Randomized Benchmarking , 2013, 1306.2348.

[25]  John M. Martinis,et al.  Rolling quantum dice with a superconducting qubit , 2014, 1406.3364.

[26]  A N Cleland,et al.  Optimal quantum control using randomized benchmarking. , 2014, Physical review letters.

[27]  Arnaud Carignan-Dugas,et al.  Characterizing universal gate sets via dihedral benchmarking , 2015, 1508.06312.

[28]  Sarah Sheldon,et al.  Characterizing errors on qubit operations via iterative randomized benchmarking , 2015, 1504.06597.

[29]  Joseph Emerson,et al.  Scalable and robust randomized benchmarking of quantum processes. , 2010, Physical review letters.

[30]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[31]  E Knill,et al.  Randomized benchmarking of multiqubit gates. , 2012, Physical review letters.

[32]  Jay M. Gambetta,et al.  Characterizing Quantum Gates via Randomized Benchmarking , 2011, 1109.6887.

[33]  M Steffen,et al.  Efficient measurement of quantum gate error by interleaved randomized benchmarking. , 2012, Physical review letters.

[34]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[35]  Andrew W. Cross,et al.  Scalable randomised benchmarking of non-Clifford gates , 2015, npj Quantum Information.

[36]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[37]  M. Nielsen A simple formula for the average gate fidelity of a quantum dynamical operation [rapid communication] , 2002, quant-ph/0205035.

[38]  Andrew W. Cross,et al.  Investigating the limits of randomized benchmarking protocols , 2013, 1308.2928.

[39]  N. Linke,et al.  High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. , 2014, Physical review letters.

[40]  C. T. Fike,et al.  Norms and exclusion theorems , 1960 .

[41]  Luigi Frunzio,et al.  Optimized driving of superconducting artificial atoms for improved single-qubit gates , 2010 .

[42]  Joel J. Wallman,et al.  Randomized benchmarking with gate-dependent noise , 2017, 1703.09835.

[43]  Changxing Pei,et al.  Randomized Benchmarking Using Unitary t-Design for Average Fidelity Estimation of Practical Quantum Circuit , 2017, 1711.08098.

[44]  Jiangfeng Du,et al.  Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions , 2015, Nature Communications.

[45]  Arnaud Carignan-Dugas,et al.  From randomized benchmarking experiments to gate-set circuit fidelity: how to interpret randomized benchmarking decay parameters , 2018, New Journal of Physics.

[46]  P. Zoller,et al.  Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate , 1996, quant-ph/9611013.

[47]  Joel J. Wallman,et al.  Robust Characterization of Loss Rates. , 2015, Physical review letters.

[48]  J. Emerson,et al.  Scalable noise estimation with random unitary operators , 2005, quant-ph/0503243.

[49]  Jay M. Gambetta,et al.  Process verification of two-qubit quantum gates by randomized benchmarking , 2012, 1210.7011.

[50]  F. Jin,et al.  Gate-error analysis in simulations of quantum computers with transmon qubits , 2017, 1709.06600.

[51]  J. P. Dehollain,et al.  Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[52]  A. J. Short,et al.  Fidelity of single qubit maps , 2002 .

[53]  Steven T. Flammia,et al.  Estimating the coherence of noise , 2015, 1503.07865.

[54]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[55]  Gerhard Klimeck,et al.  Electrically controlling single-spin qubits in a continuous microwave field , 2015, Science Advances.

[56]  Bryan H. Fong,et al.  Randomized Benchmarking as Convolution: Fourier Analysis of Gate Dependent Errors , 2018, Quantum.

[57]  M Steffen,et al.  Characterization of addressability by simultaneous randomized benchmarking. , 2012, Physical review letters.