Ectopic Expression of a Microbial-Type Rhodopsin Restores Visual Responses in Mice with Photoreceptor Degeneration

[1]  T. Ishizuka,et al.  Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels , 2006, Neuroscience Research.

[2]  T. Holy,et al.  Physiologic Diversity and Development of Intrinsically Photosensitive Retinal Ganglion Cells , 2005, Neuron.

[3]  H. Chiel,et al.  Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[5]  B. Jones,et al.  Retinal remodeling during retinal degeneration. , 2005, Experimental eye research.

[6]  Kwoon Y. Wong,et al.  Induction of photosensitivity by heterologous expression of melanopsin , 2005, Nature.

[7]  J. Bellingham,et al.  Addition of human melanopsin renders mammalian cells photoresponsive , 2005, Nature.

[8]  J. Pokorny,et al.  Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN , 2005, Nature.

[9]  Satchidananda Panda,et al.  Illumination of the Melanopsin Signaling Pathway , 2005, Science.

[10]  E. Isacoff,et al.  Light-activated ion channels for remote control of neuronal firing , 2004, Nature Neuroscience.

[11]  Heinz Wässle,et al.  Parallel processing in the mammalian retina , 2004, Nature Reviews Neuroscience.

[12]  G. Fain,et al.  The Y99C Mutation in Guanylyl Cyclase-Activating Protein 1 Increases Intracellular Ca2+ and Causes Photoreceptor Degeneration in Transgenic Mice , 2004, The Journal of Neuroscience.

[13]  Peter Hegemann,et al.  "Vision" in single-celled algae. , 2004, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[14]  T. Flotte Gene Therapy Progress and Prospects: Recombinant adeno-associated virus (rAAV) vectors , 2004, Gene Therapy.

[15]  Yog Raj Sharma,et al.  Retinitis Pigmentosa and Allied Disorders , 2004 .

[16]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Donald J Zack,et al.  Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model. , 2003, Investigative ophthalmology & visual science.

[18]  B. Jones,et al.  Retinal remodeling triggered by photoreceptor degenerations , 2003, The Journal of comparative neurology.

[19]  Debra Thompson,et al.  Vitamin A metabolism in the retinal pigment epithelium: genes, mutations, and diseases , 2003, Progress in Retinal and Eye Research.

[20]  D. Copenhagen,et al.  Visual Stimulation Is Required for Refinement of ON and OFF Pathways in Postnatal Retina , 2003, Neuron.

[21]  S. Lipton,et al.  Glycine Receptors and Glycinergic Synaptic Input at the Axon Terminals of Mammalian Retinal Rod Bipolar Cells , 2003, The Journal of physiology.

[22]  H. Fukuzawa,et al.  Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization. , 2003, Biochemical and biophysical research communications.

[23]  M. During,et al.  Promoters and regulatory elements that improve adeno-associated virus transgene expression in the brain. , 2002, Methods.

[24]  A. R. Harvey,et al.  Intravitreal Injection of Adeno-associated Viral Vectors Results in the Transduction of Different Types of Retinal Neurons in Neonatal and Adult Rats: A Comparison with Lentiviral Vectors , 2002, Molecular and Cellular Neuroscience.

[25]  E. Bamberg,et al.  Channelrhodopsin-1: A Light-Gated Proton Channel in Green Algae , 2002, Science.

[26]  Oleg A. Sineshchekov,et al.  Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[27]  E. Zrenner Will Retinal Implants Restore Vision ? , 2002 .

[28]  M. T. Davisson,et al.  Retinal degeneration mutants in the mouse , 2002, Vision Research.

[29]  B. Zemelman,et al.  Selective Photostimulation of Genetically ChARGed Neurons , 2002, Neuron.

[30]  G. Kobinger,et al.  Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. , 2001, Human molecular genetics.

[31]  R. Lund,et al.  Cell Transplantation as a Treatment for Retinal Disease , 2001, Progress in Retinal and Eye Research.

[32]  Jean Bennett,et al.  Gene therapy restores vision in a canine model of childhood blindness , 2001, Nature Genetics.

[33]  E. Strettoi,et al.  Modifications of retinal neurons in a mouse model of retinitis pigmentosa. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[34]  D. Hunt,et al.  Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy , 2000, Nature Genetics.

[35]  Z. Pan,et al.  Differential expression of high- and two types of low-voltage-activated calcium currents in rod and cone bipolar cells of the rat retina. , 2000, Journal of neurophysiology.

[36]  T. Aleman,et al.  Stable transgene expression in rod photoreceptors after recombinant adeno-associated virus-mediated gene transfer to monkey retina. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[37]  D. Oesterhelt,et al.  The structure and mechanism of the family of retinal proteins from halophilic archaea. , 1998, Current opinion in structural biology.

[38]  A. Milam,et al.  Histopathology of the human retina in retinitis pigmentosa. , 1998, Progress in retinal and eye research.

[39]  W. Hauswirth,et al.  Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[40]  A. Milam,et al.  Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. , 1997, Archives of ophthalmology.

[41]  R. Foster,et al.  The spatio-temporal pattern of photoreceptor degeneration in the aged rd/rd mouse retina , 1996, Cell and Tissue Research.

[42]  D. Baylor,et al.  How photons start vision. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[43]  M. Sandberg,et al.  Recessive mutations in the gene encoding the β–subunit of rod phosphodiesterase in patients with retinitis pigmentosa , 1993, Nature Genetics.

[44]  D. Bok Retinal transplantation and gene therapy. Present realities and future possibilities. , 1993, Investigative ophthalmology & visual science.

[45]  P. Humphries,et al.  On the molecular genetics of retinitis pigmentosa. , 1992, Science.

[46]  C. Lieber,et al.  Retinol forms retinoic acid via retinal. , 1992, Archives of biochemistry and biophysics.

[47]  J. Partridge,et al.  A new template for rhodopsin (vitamin A1 based) visual pigments , 1991, Vision Research.

[48]  C. M. Davenport,et al.  Rhodopsin mutations in autosomal dominant retinitis pigmentosa. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[49]  L. Stryer Visual excitation and recovery. , 1991, The Journal of biological chemistry.

[50]  Tiansen Li,et al.  Retinal degeneration in the rd mouse is caused by a defect in the β subunit of rod cGMP-phosphodiesterase , 1990, Nature.

[51]  John H. R. Maunsell,et al.  Functions of the ON and OFF channels of the visual system , 1986, Nature.

[52]  Don H. Anderson,et al.  Disc morphogenesis in vertebrate photoreceptors , 1980, Vision Research.

[53]  D. Oesterhelt,et al.  Functions of a new photoreceptor membrane. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[54]  H. Barlow,et al.  Responses to single quanta of light in retinal ganglion cells of the cat. , 1971, Vision research.

[55]  A. Kaneko Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina , 1970, The Journal of physiology.

[56]  J. Dowling,et al.  Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. , 1969, Journal of neurophysiology.

[57]  G. Wald The Molecular Basis of Visual Excitation , 1968, Nature.