Finite flatness of torsion subschemes of Hilbert-Blumenthal abelian varieties

Let E be a totally real number field of degree d over Q. We give a method for constructing a set of Hilbert modular cuspforms f1, . . . , fd with the following property. Let K be the fraction field of a complete dvr A, and let X/K be a Hilbert-Blumenthal abelian variety with multiplicative reduction and real multiplication by the ring of integers of E. Suppose n is an integer such that n divides the minimal valuation of fi(X) for all i. Then X[n′]/K extends to a finite flat group scheme over A, where n′ is a divisor of n with n′/n bounded by a constant depending only on f1, . . . , fd. When E = Q, the theorem reduces to a well-known property of f1 = ∆. In the cases E = Q( √ 2) and E = Q( √ 5), we produce the desired pairs of Hilbert modular forms explicitly and show how they can be used to compute the group of Neron components of a Hilbert-Blumenthal abelian variety with real multiplication by E.

[1]  G. Geer Hilbert Modular Surfaces , 1988 .

[2]  H. L. Resnikoff On the graded ring of Hilbert modular forms associated with $$\mathbb{Q}(\sqrt 5 )$$ , 1974 .

[3]  Jean-Pierre Serre Sur les représentations modulaires de degré $2$ de $\mathrm{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ , 1987 .

[4]  J. Igusa,et al.  Modular Forms and Projective Invariants , 1967 .

[5]  Friedrich Hirzebruch,et al.  The ring of Hilbert modular forms for real quadratic fields in small discriminant , 1977 .

[6]  Shoyu Nagaoka On the ring of Hilbert modular forms over Z , 1983 .

[7]  D. Mumford An analytic construction of degenerating abelian varieties over complete rings , 1971 .

[8]  N. Katz,et al.  Arithmetic Moduli of Elliptic Curves. (AM-108) , 1985 .

[9]  M. Rapoport Compactifications de l'espace de modules de Hilbert-Blumenthal , 1978 .

[10]  Friedrich Hirzebruch,et al.  Hilbert modular surfaces , 1973 .

[11]  Serge Lang,et al.  Abelian varieties , 1983 .

[12]  M. Raynaud Passage au quotient par une relation d’équivalence plate , 1967 .

[13]  G. Faltings,et al.  Degeneration of Abelian varieties , 1990 .

[14]  Nicholas M. Katz,et al.  p-AdicL-functions for CM fields , 1978 .

[15]  N. Shepherd-barron,et al.  Mod 2 and mod 5 icosahedral representations , 1997 .

[16]  Alexander Grothendieck,et al.  Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné) : III. Étude cohomologique des faisceaux cohérents, Première partie , 1961 .

[17]  A. Grothendieck,et al.  Éléments de géométrie algébrique , 1960 .

[18]  J. Tate,et al.  A REVIEW OF NON-ARCHIMEDEAN ELLIPTIC FUNCTIONS , 1997 .

[19]  Jean-Pierre Serre Sur les répresentations modulaires de degré 2 de Gal $$ (\bar{Q}/Q) $$ , 2000 .

[20]  N. Katz,et al.  Arithmetic moduli of elliptic curves , 1985 .

[21]  R. Müller Hilbertsche modulformen und modulfunktionen zuQ( $$\sqrt 8$$ ) , 1983 .