Development of a high resolution and high dispersion Thomson parabola.

Here, we report on the development of a novel high resolution and high dispersion Thomson parabola for simultaneously resolving protons and low-Z ions of more than 100 MeV/nucleon necessary to explore novel laser ion acceleration schemes. High electric and magnetic fields enable energy resolutions of ΔE∕E < 5% at 100 MeV/nucleon and impede premature merging of different ion species at low energies on the detector plane. First results from laser driven ion acceleration experiments performed at the Trident Laser Facility demonstrate high resolution and superior species and charge state separation of this novel Thomson parabola for ion energies of more than 30 MeV/nucleon.

[1]  S Meyroneinc,et al.  Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. , 2004, Physical review letters.

[2]  F. Paschen,et al.  Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz , 1889 .

[3]  R. J. Clarke,et al.  Image plate response for conditions relevant to laser–plasma interaction experiments , 2008 .

[4]  P. B. Price,et al.  Ion Explosion Spike Mechanism for Formation of Charged-Particle Tracks in Solids , 1965 .

[5]  Z. Sheng,et al.  Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime. , 2008, Physical review letters.

[6]  B. Albright,et al.  Progress on ion based fast ignition , 2008 .

[7]  J. Cobble,et al.  High-energy, high-resolution x-ray imaging on the Trident short-pulse laser facility. , 2008, The Review of scientific instruments.

[8]  R. Wood XLVII. The resonance spectra of iodine vapour and their destruction by gases of the helium group , 1911 .

[9]  D. Neely,et al.  A modified Thomson parabola spectrometer for high resolution multi-MeV ion measurements—Application to laser-driven ion acceleration , 2010 .

[10]  B. Albright,et al.  Spectral properties of laser-accelerated mid-Z MeV∕u ion beams , 2005 .

[11]  T Shimada,et al.  Enhanced laser-driven ion acceleration in the relativistic transparency regime. , 2009, Physical review letters.

[12]  P. Norreys,et al.  Proton radiography of a laser-driven implosion. , 2006, Physical Review Letters.

[13]  T. C. Sangster,et al.  Intense high-energy proton beams from Petawatt-laser irradiation of solids. , 2000, Physical review letters.

[14]  M. Geissel,et al.  Development and calibration of a Thomson parabola with microchannel plate for the detection of laser-accelerated MeV ions. , 2008, The Review of scientific instruments.

[15]  Andrea Macchi,et al.  "Light sail" acceleration reexamined. , 2009, Physical review letters.

[16]  D. Neely,et al.  Spectral modification of laser-accelerated proton beams by self-generated magnetic fields , 2009 .

[17]  M Borghesi,et al.  Highly efficient relativistic-ion generation in the laser-piston regime. , 2004, Physical review letters.

[18]  Toshiki Tajima,et al.  Laser Acceleration of Ions for Radiation Therapy , 2009 .

[19]  M. D. Perry,et al.  Fast ignition by intense laser-accelerated proton beams. , 2001, Physical review letters.

[20]  G. Shvets,et al.  Stable laser-driven proton beam acceleration from a two-ion-species ultrathin foil. , 2009, Physical review letters.

[21]  Brian James Albright,et al.  Relativistic Buneman instability in the laser breakout afterburner , 2007 .

[22]  Tsutomu Shimada,et al.  High-temporal contrast using low-gain optical parametric amplification. , 2009, Optics letters.

[23]  Jiri Limpouch,et al.  Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses , 2008 .

[24]  D Kiefer,et al.  Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. , 2009, Physical review letters.

[25]  Michael D. Perry,et al.  Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets , 2000 .

[26]  Brian James Albright,et al.  Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets , 2007 .

[27]  K. Witte,et al.  MeV ion jets from short-pulse-laser interaction with thin foils. , 2002, Physical review letters.