Higher Order Time Stepping for Second Order Hyperbolic Problems and Optimal CFL Conditions

We investigate explicit higher order time discretizations of linear second order hyperbolic problems. We study the even order (2m) schemes obtained by the modified equation method. We show that the corresponding CFL upper bound for the time step remains bounded when the order of the scheme increases. We propose variants of these schemes constructed to optimize the CFL condition. The corresponding optimization problem is analyzed in detail and the analysis results in a specific numerical algorithm. The corresponding results are quite promising and suggest various conjectures.

[1]  Gary Cohen,et al.  Mixed Spectral Finite Elements for the Linear Elasticity System in Unbounded Domains , 2005, SIAM J. Sci. Comput..

[2]  E. Hairer,et al.  Stiff and differential-algebraic problems , 1991 .

[3]  M. A. Dablain,et al.  The application of high-order differencing to the scalar wave equation , 1986 .

[4]  Patrick Joly,et al.  Construction and Analysis of Fourth-Order Finite Difference Schemes for the Acoustic Wave Equation in Nonhomogeneous Media , 1996 .

[5]  L. Fezoui,et al.  Convergence and stability of a discontinuous galerkin time-domain method for the 3D heterogeneous maxwell equations on unstructured meshes , 2005 .

[6]  Patrick Joly,et al.  Variational Methods for Time-Dependent Wave Propagation Problems , 2003 .

[7]  Patrick Joly,et al.  Construction and analysis of higher order finite difference schemes for the 1D wave equation , 2000 .

[8]  Gary Cohen Higher-Order Numerical Methods for Transient Wave Equations , 2001 .

[9]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[10]  Gaston H. Gonnet,et al.  Scientific Computation , 2009 .

[11]  Jean E. Roberts,et al.  Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation , 2000, SIAM J. Numer. Anal..

[12]  G. Cohen,et al.  Higher-Order Numerical Methods for Transient Wave Equations , 2001 .

[13]  E. Cheney Introduction to approximation theory , 1966 .

[14]  Ernst Hairer,et al.  Examples of Stiff Equations , 1996 .

[15]  John B. Bell,et al.  A modified equation approach to constructing fourth order methods for acoustic wave propagation , 1987 .

[16]  Stéphane Del Pino,et al.  Arbitrary high-order schemes for the linear advection and wave equations: application to hydrodynamics and aeroacoustics , 2006 .

[17]  Peter Deuflhard,et al.  Newton Methods for Nonlinear Problems , 2004 .

[18]  Shan Zhao,et al.  DSC time-domain solution of Maxwell's equations , 2003 .

[19]  P. Lascaux,et al.  Analyse numérique matricielle appliquée a l'art de l'ingénieur , 1987 .

[20]  Michael C. Ferris,et al.  Complementarity: Applications, Algorithms and Extensions , 2010 .

[21]  J. Hesthaven,et al.  Nodal high-order methods on unstructured grids , 2002 .

[22]  Stefania Bellavia,et al.  An interior global method for nonlinear systems with simple bounds , 2005, Optim. Methods Softw..

[23]  J. Frédéric Bonnans,et al.  Numerical Optimization: Theoretical and Practical Aspects (Universitext) , 2006 .

[24]  Eleuterio F. Toro,et al.  ADER schemes for scalar non-linear hyperbolic conservation laws with source terms in three-space dimensions , 2005 .

[25]  Barry Simon,et al.  Analysis of Operators , 1978 .

[26]  X. Ferrieres,et al.  High spatial order finite element method to solve Maxwell's equations in time domain , 2005, IEEE Transactions on Antennas and Propagation.

[27]  W. A. Mulder,et al.  Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation , 1999 .

[28]  Jean Charles Gilbert,et al.  Numerical Optimization: Theoretical and Practical Aspects , 2003 .

[29]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[30]  Mengfu Wang,et al.  Precise integration methods based on the Chebyshev polynomial of the first kind , 2008 .

[31]  L. Schwartz Théorie des ensembles et topologie , 1991 .

[32]  C. Kanzow,et al.  An Active Set-Type Newton Method for Constrained Nonlinear Systems , 2001 .

[33]  Armel de La Bourdonnaye,et al.  On the derivation of the modified equation for the analysis of linear numerical methods , 1997 .

[34]  Mark Ainsworth,et al.  Topics in Computational Wave Propagation , 2003 .

[35]  R. M. Alford,et al.  ACCURACY OF FINITE‐DIFFERENCE MODELING OF THE ACOUSTIC WAVE EQUATION , 1974 .

[36]  Qing Huo Liu,et al.  Higher-Order Numerical Methods for Transient Wave Equations , 2003 .

[37]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[38]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.