Life cycle aspects of nanomaterials

[1]  A. Tillman,et al.  The hitch hiker's guide to LCA (Life Cycle Assessment): an orientation in Life Cycle Assessment methodology and application , 2004 .

[2]  N. Englert Fine particles and human health--a review of epidemiological studies. , 2004, Toxicology letters.

[3]  N. J. Themelis,et al.  Life cycle assessment of using powder and liquid precursors in plasma spraying: The case of yttria-stabilized zirconia , 2010 .

[4]  Maria Dusinska,et al.  The importance of life cycle concepts for the development of safe nanoproducts. , 2010, Toxicology.

[5]  Roland W. Scholz,et al.  Probabilistic material flow modeling for assessing the environmental exposure to compounds: Methodology and an application to engineered nano-TiO2 particles , 2010, Environ. Model. Softw..

[6]  Ortwin Renn Risk Governance: Coping with Uncertainty in a Complex World , 2008 .

[7]  Dominik Saner,et al.  Persistence of engineered nanoparticles in a municipal solid-waste incineration plant. , 2012, Nature nanotechnology.

[8]  Thomas L. Theis,et al.  An environmental impact assessment of quantum dot photovoltaics (QDPV) from raw material acquisition through use , 2011 .

[9]  Sverker Molander,et al.  Impacts of a Silver‐Coated Future , 2011 .

[10]  Vikas Khanna,et al.  Assessing the Life Cycle Environmental Implications of Nanomanufacturing: Opportunities and Challenges , 2008 .

[11]  B. Bakshi,et al.  Life Cycle of Titanium Dioxide Nanoparticle Production , 2011 .

[12]  B. Nowack,et al.  Exposure modeling of engineered nanoparticles in the environment. , 2008, Environmental science & technology.

[13]  V. Fthenakis,et al.  Nanomaterials in PV manufacture: Some life cycle environmental- and health-considerations , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[14]  S. Hellweg,et al.  Prospective Environmental Life Cycle Assessment of Nanosilver T-Shirts , 2011, Environmental science & technology.

[15]  T. E. McKone,et al.  CalTOX (registered trademark), A multimedia total exposure model spreadsheet user's guide. Version 4.0(Beta) , 2002 .

[16]  A. Tropsha,et al.  Quantitative nanostructure-activity relationship modeling. , 2010, ACS nano.

[17]  H. van Lente,et al.  Nanotechnology and Sustainability , 2005 .

[18]  M. L. Healy,et al.  Economic and Environmental Tradeoffs in SWNT Production , 2006 .

[19]  Vikas Khanna,et al.  Comparative life cycle assessment: Reinforcing wind turbine blades with carbon nanofibers , 2010, Proceedings of the 2010 IEEE International Symposium on Sustainable Systems and Technology.

[20]  Sir,et al.  Inventory of consumer products containing nanomaterials , 2007 .

[21]  Russell L. Ackoff,et al.  Science in the Systems Age: Beyond IE, OR, and MS , 1973, Oper. Res..

[22]  Steffen Foss Hansen,et al.  Categorization framework to aid hazard identification of nanomaterials , 2007 .

[23]  Rana Pant,et al.  International Reference Life Cycle Data System (ILCD) Handbook: Review schemes for Life Cycle Assessment , 2011 .

[24]  Björn A. Sandén,et al.  Assessing the Environmental Risks of Silver from Clothes in an Urban Area , 2014 .

[25]  HungMin Chein,et al.  Evaluation of nanoparticle emission for TiO2 nanopowder coating materials , 2006 .

[26]  Tomasz Arodz,et al.  Computational methods in developing quantitative structure-activity relationships (QSAR): a review. , 2006, Combinatorial chemistry & high throughput screening.

[27]  L.J. Lee,et al.  Life Cycle Energy Analysis and Environmental Life Cycle Assessment of Carbon Nanofibers Production , 2007, Proceedings of the 2007 IEEE International Symposium on Electronics and the Environment.

[28]  Enda Cummins,et al.  Nano-Scale Pollutants: Fate in Irish Surface and Drinking Water Regulatory Systems , 2010 .

[29]  K. Hungerbühler,et al.  Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. , 2008, The Science of the total environment.

[30]  H. Burtscher,et al.  EFFICIENCY OF FLUE GAS CLEANING IN WAST INCINERATION FOR SUBMICRON PARTICLES , 2002 .

[31]  M. Steinfeldt,et al.  Nachhaltigkeitseffekte durch Herstellung und Anwendung nanotechnologischer Produkte , 2004 .

[32]  Cássia Maria Lie Ugaya,et al.  Life cycle assessment of cellulose nanowhiskers , 2012 .

[33]  Björn A. Sandén,et al.  Energy Requirements of Carbon Nanoparticle Production , 2008 .

[34]  Vikas Khanna,et al.  Life Cycle Energy Consumption and Environmental Impact , 2008 .

[35]  Mark Crane,et al.  The ecotoxicology and chemistry of manufactured nanoparticles , 2008, Ecotoxicology.

[36]  Jeroen B. Guinée,et al.  Using SFA indicators to support environmental policy , 1999, Environmental science and pollution research international.

[37]  Ester van der Voet,et al.  Substance flow analysis methodology , 2002 .

[38]  Michael A. Gonzalez,et al.  An examination of silver nanoparticles in socks using screening-level life cycle assessment , 2011 .

[39]  Riego Sintes Juan,et al.  Safety Issues and Regulatory Challenges of Nanomaterials , 2012 .

[40]  Roland W. Scholz,et al.  Exposure modeling of engineered nanoparticles , 2009 .

[41]  Martin K. Patel,et al.  Influence of using nanoobjects as filler on functionality-based energy use of nanocomposites , 2010 .

[42]  Rickard Arvidsson,et al.  Contributions to Emission, Exposure and Risk Assessment of Nanomaterials , 2012 .

[43]  Lester B Lave,et al.  Life cycle economic and environmental implications of using nanocomposites in automobiles. , 2003, Environmental science & technology.

[44]  Emma Rex Marketing for Life Cycle Thinking , 2008 .

[45]  L. Mercante,et al.  Exploring release and recovery of nanomaterials from commercial polymeric nanocomposites , 2013 .

[46]  T. Puzyn,et al.  Toward the development of "nano-QSARs": advances and challenges. , 2009, Small.

[47]  Leonard Sweet,et al.  Nanotechnology—Life-Cycle Risk Management , 2006 .

[48]  Adedeji E. Agboola,et al.  Development and model formulation of scalable carbon nanotube processes: HiPCO and CoMoCAT process models , 2005 .

[49]  Göran Finnveden,et al.  Environmental systems analysis tools – an overview , 2005 .

[50]  John Pendergrass,et al.  Project on Emerging Nanotechnologies , 2007 .

[51]  John S. Evans,et al.  Introduction to Special Issue on Life Cycle Assessment and Risk Analysis , 2002 .

[52]  M. L. Healy,et al.  Economic assessment of single-walled carbon nanotube processes , 2010 .

[53]  Fadri Gottschalk,et al.  Studying the potential release of carbon nanotubes throughout the application life cycle , 2008 .

[54]  Naomi Lubick,et al.  Risks of nanotechnology remain uncertain. , 2008, Environmental science & technology.

[55]  Not Indicated,et al.  International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance , 2010 .

[56]  Gibson Peter,et al.  Considerations on a Definition of Nanomaterial for Regulatory Purposes , 2010 .

[57]  W. Bainbridge,et al.  Societal implications of nanoscience and nanotechnology , 2001 .

[58]  Stig Irving Olsen,et al.  The potential role of life cycle assessment in regulation of chemicals in the European union , 2004 .

[59]  Douglas K. Martin,et al.  Nanotechnology and the Developing World , 2005, PLoS medicine.

[60]  Gwi-Nam Bae,et al.  Monitoring Multiwalled Carbon Nanotube Exposure in Carbon Nanotube Research Facility , 2008 .

[61]  Jo Anne Shatkin,et al.  Informing Environmental Decision Making by Combining Life Cycle Assessment and Risk Analysis , 2008 .

[62]  Mary Ann Curran,et al.  Life cycle assessment as a tool to enhance the environmental performance of carbon nanotube products: a review , 2012 .

[63]  G. Lowry,et al.  Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. , 2009, Nature nanotechnology.

[64]  M. Hauschild Assessing environmental impacts in a life-cycle perspective. , 2005, Environmental science & technology.

[65]  R. Scholz,et al.  Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions. , 2009, Environmental science & technology.

[66]  European Parliament Resolution on Nanosciences and Nanotechnologies: An Action Plan for Europe 2005–2009 , 2010 .

[67]  D. Rickerby Solar Photocatalytic Drinking Water Treatment for Developing Countries , 2014 .

[68]  Witold-Roger Poganietz,et al.  Towards a framework for life cycle thinking in the assessment of nanotechnology , 2008 .

[69]  Sverker Molander,et al.  Particle Flow Analysis , 2012 .

[70]  F. E. R. Pollard-Urquhart San sebastian, spain , 1902 .

[71]  Anders Hagfeldt,et al.  Environmental aspects of electricity generation from a nanocrystalline dye sensitized solar cell system , 2001 .

[72]  David Pennington,et al.  Recent developments in Life Cycle Assessment. , 2009, Journal of environmental management.

[73]  Stig Irving Olsen,et al.  Nanotechnology and Life Cycle Assessment. A systems approach to Nanotechnology and the environment: Synthesis of Results Obtained at a Workshop Washington, DC 2–3 October 2006 , 2007 .

[74]  Mark A. J. Huijbregts,et al.  USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment , 2008 .

[75]  Vasilis Fthenakis,et al.  Comparative Life-cycle Analysis of Photovoltaics Based on Nano-materials: A Proposed Framework , 2007 .

[76]  Ernst Worrell,et al.  Preliminary evaluation of risks related to waste incineration of polymer nanocomposites. , 2012, The Science of the total environment.

[77]  Vikas Khanna,et al.  Carbon Nanofiber Production , 2008 .

[78]  Brian L. Wardle,et al.  Particle exposure levels during CVD growth and subsequent handling of vertically-aligned carbon nanotube films , 2008 .

[79]  Justine Digance,et al.  Life cycle model , 1997 .

[80]  Jing Wang,et al.  Modeling the flows of engineered nanomaterials during waste handling. , 2013, Environmental science. Processes & impacts.

[81]  T. Seager,et al.  Coupling multi-criteria decision analysis, life-cycle assessment, and risk assessment for emerging threats. , 2011, Environmental science & technology.

[82]  Marcelle C. McManus,et al.  Identifying the largest environmental life cycle impacts during carbon nanotube synthesis via chemical vapour deposition , 2013 .

[83]  Roland Hischier,et al.  Life cycle assessment of engineered nanomaterials: state of the art and strategies to overcome existing gaps. , 2012, The Science of the total environment.

[84]  Christian Capello,et al.  Energy Consumption During Nanoparticle Production: How Economic is Dry Synthesis? , 2006 .

[85]  M Boller,et al.  Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. , 2008, Environmental pollution.

[86]  Igor Linkov,et al.  Coupling Multicriteria Decision Analysis and Life Cycle Assessment for Nanomaterials , 2008 .

[87]  Michael Stintz,et al.  Method for the characterization of the abrasion induced nanoparticle release into air from surface coatings , 2009 .

[88]  A. A. Jensen,et al.  Life Cycle Management: A Business Guide to Sustainability , 2007 .

[89]  Martin Kumar Patel,et al.  Environmental and Cost Assessment of a Polypropylene Nanocomposite , 2007 .

[90]  Bhavik R Bakshi,et al.  Appreciating the role of thermodynamics in LCA improvement analysis via an application to titanium dioxide nanoparticles. , 2011, Environmental science & technology.

[91]  Andrew D. Maynard,et al.  Don't define nanomaterials , 2011, Nature.

[92]  Vikas Khanna,et al.  Carbon nanofiber polymer composites: evaluation of life cycle energy use. , 2009, Environmental science & technology.

[93]  Hamed Babaizadeh,et al.  Life cycle assessment of nano-sized titanium dioxide coating on residential windows , 2013 .

[94]  Paul Westerhoff,et al.  Nanoparticle silver released into water from commercially available sock fabrics. , 2008, Environmental science & technology.

[95]  Peter Checkland,et al.  Systems Thinking, Systems Practice: Includes a 30-Year Retrospective , 1999 .

[96]  H Scott Matthews,et al.  Life cycle benefits of using nanotechnology to stabilize platinum-group metal particles in automotive catalysts. , 2005, Environmental science & technology.

[97]  Satish Joshi,et al.  Can Nanotechnology Improve the Sustainability of Biobased Products? , 2008 .

[98]  R. Carlson,et al.  Relationships between Life Cycle Assessment and Risk Assessment Potentials and Obstacles , 2005 .

[99]  J.A. Isaacs,et al.  Environmental Assessment of SWNT Production , 2006, Proceedings of the 2006 IEEE International Symposium on Electronics and the Environment, 2006..

[100]  Helen H. Lou,et al.  Environmental Impact Assessment for Potential Continuous Processes for the Production of Carbon Nanotubes , 2008 .

[101]  S. Scalbi Summary of the Specialist Brainstorming and Coordination Meeting on 'Life Cycle Assessment (LCA) and Risk Analysis in Nanomaterials-related NMP projects' - Bruxelles, 2nd March 2011 , 2011 .

[102]  Alexis Laurent,et al.  Analysis of current research addressing complementary use of life-cycle assessment and risk assessment for engineered nanomaterials: have lessons been learned from previous experience with chemicals? , 2012, Journal of Nanoparticle Research.

[103]  Torsten Fleischer,et al.  Making nanotechnology developments sustainable. A role for technology assessment , 2008 .

[104]  M. Marinovich,et al.  Risk Assessment of Products of Nanotechnologies , 2009 .

[105]  Sangwon Suh,et al.  Life cycle assessment at nanoscale: review and recommendations , 2012, The International Journal of Life Cycle Assessment.

[106]  Geoffrey F. Grubb Improving the Environmental Performance of Manufacturing Systems via Exergy, Techno-ecological Synergy, and Optimization , 2010 .

[107]  Fadri Gottschalk,et al.  The release of engineered nanomaterials to the environment. , 2011, Journal of environmental monitoring : JEM.

[108]  G.F. Grubb,et al.  Energetic and environmental evaluation of titanium dioxide nanoparticles , 2008, 2008 IEEE International Symposium on Electronics and the Environment.

[109]  Hans-Jörg Althaus,et al.  The ecoinvent Database: Overview and Methodological Framework (7 pp) , 2005 .

[110]  M. L. Healy,et al.  Environmental Assessment of Single‐Walled Carbon Nanotube Processes , 2008 .

[111]  Julie W. Fitzpatrick,et al.  Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy , 2005, Particle and Fibre Toxicology.

[112]  Takahiro Kobayashi,et al.  Measurement of the Physical Properties of Aerosols in a Fullerene Factory for Inhalation Exposure Assessment , 2008, Journal of occupational and environmental hygiene.

[113]  Vikas Khanna,et al.  Environmental and Risk Assessment at Multiple Scales with Application to Emerging Nanotechnologies , 2009 .

[114]  Jerzy Leszczynski,et al.  Nanomaterials – the Next Great Challenge for Qsar Modelers , 2009, Recent Advances in QSAR Studies.

[115]  Lucas Reijnders,et al.  Cleaner nanotechnology and hazard reduction of manufactured nanoparticles , 2006 .