Steady-State Acceptor Fluorescence Anisotropy Imaging under Evanescent Excitation for Visualisation of FRET at the Plasma Membrane

We present a novel imaging system combining total internal reflection fluorescence (TIRF) microscopy with measurement of steady-state acceptor fluorescence anisotropy in order to perform live cell Förster Resonance Energy Transfer (FRET) imaging at the plasma membrane. We compare directly the imaging performance of fluorescence anisotropy resolved TIRF with epifluorescence illumination. The use of high numerical aperture objective for TIRF required correction for induced depolarization factors. This arrangement enabled visualisation of conformational changes of a Raichu-Cdc42 FRET biosensor by measurement of intramolecular FRET between eGFP and mRFP1. Higher activity of the probe was found at the cell plasma membrane compared to intracellularly. Imaging fluorescence anisotropy in TIRF allowed clear differentiation of the Raichu-Cdc42 biosensor from negative control mutants. Finally, inhibition of Cdc42 was imaged dynamically in live cells, where we show temporal changes of the activity of the Raichu-Cdc42 biosensor.

[1]  F. Perrin Polarisation de la lumière de fluorescence. Vie moyenne des molécules dans l'etat excité , 1926 .

[2]  A. Long,et al.  A human cell line from a pleural effusion derived from a breast carcinoma. , 1973, Journal of the National Cancer Institute.

[3]  M. Olivé,et al.  Breast tumor cell lines from pleural effusions. , 1974, Journal of the National Cancer Institute.

[4]  D. Axelrod Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. , 1979, Biophysical journal.

[5]  N. Thompson,et al.  Total internal reflection fluorescence. , 1984, Annual review of biophysics and bioengineering.

[6]  N. Thompson,et al.  Effect of planar dielectric interfaces on fluorescence emission and detection. Evanescent excitation with high-aperture collection. , 1984, Biophysical journal.

[7]  J. Laureyns,et al.  The Effect of High-Numerical-Aperture Objectives on Polarization Measurements in Micro-Raman Spectrometry , 1985 .

[8]  D. Axelrod,et al.  Fluorescence emission at dielectric and metal-film interfaces , 1987 .

[9]  G. Cooper,et al.  Inhibition of NIH 3T3 cell proliferation by a mutant ras protein with preferential affinity for GDP , 1988, Molecular and cellular biology.

[10]  R. Ballew,et al.  An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays , 1989 .

[11]  J. Pringle,et al.  Multicopy suppression of the cdc24 budding defect in yeast by CDC42 and three newly identified genes including the ras-related gene RSR1. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[12]  D. Axelrod Fluorescence polarization microscopy. , 1989, Methods in cell biology.

[13]  B. Valeur,et al.  Fluorescence depolarization by electronic energy transfer in donor–acceptor pairs of like and unlike chromophores , 1991 .

[14]  K. Kaibuchi,et al.  Small GTP-binding proteins. , 1992, International review of cytology.

[15]  T. Miki Interaction of ect2 and Dbl with Rho-related GTPases. , 1995, Methods in enzymology.

[16]  J. Chant,et al.  Rac and Cdc42 Induce Actin Polymerization and G1 Cell Cycle Progression Independently of p65PAK and the JNK/SAPK MAP Kinase Cascade , 1996, Cell.

[17]  P. D. Higdon,et al.  On the general properties of polarised light conventional and confocal microscopes , 1998 .

[18]  M. Westerfield,et al.  Characterization of paired tumor and non‐tumor cell lines established from patients with breast cancer , 1998, International journal of cancer.

[19]  J. Swanson,et al.  Cell membrane orientation visualized by polarized total internal reflection fluorescence. , 1999, Biophysical journal.

[20]  B. Kaina,et al.  Rho GTPases are over‐expressed in human tumors , 1999, International journal of cancer.

[21]  A. Hall,et al.  Rho GTPases and their effector proteins. , 2000, The Biochemical journal.

[22]  Xiongwei Zhu,et al.  Activation of oncogenic pathways in degenerating neurons in Alzheimer disease , 2000, International Journal of Developmental Neuroscience.

[23]  K. Tashiro,et al.  Partial depolarization effect of high‐numerical‐aperture objectives on polarized microfocus Raman spectra of orthorhombic poly(oxymethylene) single crystal , 2000 .

[24]  A. Miyawaki,et al.  Spatio-temporal images of growth-factor-induced activation of Ras and Rap1 , 2001, Nature.

[25]  J. Nicolas,et al.  Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins. , 2001, Biophysical journal.

[26]  S. Inoué,et al.  Polarization aberrations caused by differential transmission and phase shift in high- numerical-aperture lenses: theory, measurement, and rectification , 2002 .

[27]  M. Matsuda,et al.  Activation of Rac and Cdc42 Video Imaged by Fluorescent Resonance Energy Transfer-Based Single-Molecule Probes in the Membrane of Living Cells , 2002, Molecular and Cellular Biology.

[28]  Stefan W. Hell,et al.  Depolarization by high-aperture focusing , 2002, SPIE BiOS.

[29]  D. Axelrod Total Internal Reflection Fluorescence Microscopy in Cell Biology , 2001, Traffic.

[30]  T. Jovin,et al.  FRET imaging , 2003, Nature Biotechnology.

[31]  M. Gee,et al.  Time-resolved evanescent wave-induced fluorescence anisotropy for the determination of molecular conformational changes of proteins at an interface , 2004, European Biophysics Journal.

[32]  J. Siegel,et al.  Wide-Field Time-Resolved Fluorescence Anisotropy Imaging (TR-FAIM) , 2003 .

[33]  A. Miyawaki Visualization of the spatial and temporal dynamics of intracellular signaling. , 2003, Developmental cell.

[34]  K. Hahn,et al.  Activation of Endogenous Cdc42 Visualized in Living Cells , 2004, Science.

[35]  K. Suhling,et al.  The Influence of Solvent Viscosity on the Fluorescence Decay and Time-Resolved Anisotropy of Green Fluorescent Protein , 2002, Journal of Fluorescence.

[36]  T. Forster Energiewanderung und Fluoreszenz , 2004, Naturwissenschaften.

[37]  M. Neil,et al.  Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier , 2004 .

[38]  A. Hoppe,et al.  Polarized fluorescence resonance energy transfer microscopy. , 2004, Biophysical journal.

[39]  Y. Goldman,et al.  Measurement of single macromolecule orientation by total internal reflection fluorescence polarization microscopy. , 2005, Biophysical journal.

[40]  M. Gee,et al.  Time-Resolved Evanescent Wave-Induced Fluorescence Anisotropy Measurements , 2005 .

[41]  Borivoj Vojnovic,et al.  Global and pixel kinetic data analysis for FRET detection by multi-photon time-domain FLIM , 2005, SPIE BiOS.

[42]  K. Aoki,et al.  Monitoring spatio-temporal regulation of Ras and Rho GTPase with GFP-based FRET probes. , 2005, Methods.

[43]  P. Żuchowski,et al.  High-aperture-excitation and -detection fluorescence spectroscopy with polarized light , 2005 .

[44]  Keith A. Lidke,et al.  The role of photon statistics in fluorescence anisotropy imaging , 2005, IEEE Transactions on Image Processing.

[45]  D. Piston,et al.  High-contrast imaging of fluorescent protein FRET by fluorescence polarization microscopy. , 2005, Biophysical journal.

[46]  B. Vojnovic,et al.  Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions. , 2005, Biophysical journal.

[47]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[48]  M. Neil,et al.  Fluorescence lifetime imaging provides enhanced contrast when imaging the phase-sensitive dye di-4-ANEPPDHQ in model membranes and live cells. , 2006, Biophysical journal.

[49]  W. Zipfel,et al.  Optimization of Pairings and Detection Conditions for Measurement of FRET between Cyan and Yellow Fluorescent Proteins , 2006, Microscopy and Microanalysis.

[50]  E. Schaefer,et al.  Paxillin phosphorylation at Ser273 localizes a GIT1–PIX–PAK complex and regulates adhesion and protrusion dynamics , 2006, The Journal of cell biology.

[51]  A. Ridley Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. , 2006, Trends in cell biology.

[52]  I. Riven,et al.  GIRK Channel Activation Involves a Local Rearrangement of a Preformed G Protein Channel Complex , 2006, Neuron.

[53]  J. Fisz Fluorescence polarization spectroscopy at combined high-aperture excitation and detection: application to one-photon-excitation fluorescence microscopy. , 2007, The journal of physical chemistry. A.

[54]  P. French,et al.  High speed optically sectioned fluorescence lifetime imaging permits study of live cell signaling events. , 2007, Optics express.

[55]  M. A. García-Cabezas,et al.  Cdc42 is highly expressed in colorectal adenocarcinoma and downregulates ID4 through an epigenetic mechanism. , 2008, International journal of oncology.

[56]  M. Bal,et al.  Calmodulin binding to M‐type K+ channels assayed by TIRF/FRET in living cells , 2008, The Journal of physiology.

[57]  M. Tramier,et al.  Fluorescence anisotropy imaging microscopy for homo-FRET in living cells. , 2008, Methods in cell biology.

[58]  A. Stemmer,et al.  Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator. , 2008, Optics letters.

[59]  Peter Saggau,et al.  Development of fast two-dimensional standing wave microscopy using acousto-optic deflectors , 2008, SPIE BiOS.

[60]  S. Ameer-Beg,et al.  Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein–protein interactions using global analysis , 2009, Journal of the Royal Society Interface.

[61]  Mark Bates,et al.  Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy , 2008, Science.

[62]  R. Heintzmann,et al.  satFRET: estimation of Förster resonance energy transfer by acceptor saturation , 2008, European Biophysics Journal.

[63]  M. Bal,et al.  Homomeric and Heteromeric Assembly of KCNQ (Kv7) K+ Channels Assayed by Total Internal Reflection Fluorescence/Fluorescence Resonance Energy Transfer and Patch Clamp Analysis* , 2008, Journal of Biological Chemistry.

[64]  J. Norman,et al.  Neuropilin-1/GIPC1 Signaling Regulates α5β1 Integrin Traffic and Function in Endothelial Cells , 2009, PLoS biology.

[65]  Bryant B. Chhun,et al.  Super-Resolution Video Microscopy of Live Cells by Structured Illumination , 2009, Nature Methods.

[66]  A. Coolen,et al.  Integrating Receptor Signal Inputs That Influence Small Rho GTPase Activation Dynamics at the Immunological Synapse , 2009, Molecular and Cellular Biology.

[67]  S. Ameer-Beg,et al.  Fluorescence lifetime and polarization-resolved imaging in cell biology. , 2009, Current opinion in biotechnology.

[68]  A. Waller,et al.  Identification of a Small GTPase Inhibitor Using a High-Throughput Flow Cytometry Bead-Based Multiplex Assay , 2010, Journal of biomolecular screening.

[69]  F. Abdul-Karim,et al.  HER2/ErbB2-induced Breast Cancer Cell Migration and Invasion Require p120 Catenin Activation of Rac1 and Cdc42* , 2010, The Journal of Biological Chemistry.

[70]  M. Neil,et al.  High plasma membrane lipid order imaged at the immunological synapse periphery in live T cells , 2010, Molecular membrane biology.

[71]  U. Tepass,et al.  Cdc42 and Vesicle Trafficking in Polarized Cells , 2010, Traffic.

[72]  S. Ameer-Beg,et al.  Time‐lapse FRET microscopy using fluorescence anisotropy , 2010, Journal of microscopy.

[73]  T. Watson,et al.  Fluorescence lifetime endoscopy using TCSPC for the measurement of FRET in live cells , 2010, Optics express.

[74]  S. Simon,et al.  Imaging with total internal reflection fluorescence microscopy for the cell biologist , 2010, Journal of Cell Science.

[75]  Luis P. Fernandes,et al.  A Targeted siRNA Screen Identifies Regulators of Cdc42 Activity at the Natural Killer Cell Immunological Synapse , 2011, Science Signaling.

[76]  H. Ngan,et al.  p70 S6 kinase in the control of actin cytoskeleton dynamics and directed migration of ovarian cancer cells , 2011, Oncogene.

[77]  A. Ridley Life at the Leading Edge , 2011, Cell.

[78]  H. Grimes,et al.  Distinct Roles of Cdc42 in Thymopoiesis and Effector and Memory T Cell Differentiation , 2011, PloS one.

[79]  Y. Takano,et al.  Invasion of breast cancer cells into collagen matrix requires TGF‐α and Cdc42 signaling , 2011, FEBS letters.

[80]  Luis P. Fernandes,et al.  How Förster resonance energy transfer imaging improves the understanding of protein interaction networks in cancer biology. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[81]  A. Bader,et al.  Homo-FRET Imaging as a Tool to Quantify Protein and Lipid Clustering , 2011 .

[82]  C. Duyckaerts,et al.  Local cholesterol increase triggers amyloid precursor protein‐Bacel clustering in lipid rafts and rapid endocytosis , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[83]  M. Gee,et al.  Resonance energy-transfer studies of the conformational change on the adsorption of oligonucleotides to a silica interface. , 2011, The journal of physical chemistry. B.

[84]  Imaging properties of supercritical angle fluorescence optics. , 2011, Optics express.

[85]  E. Sahai,et al.  In vivo fluorescence resonance energy transfer imaging reveals differential activation of Rho-family GTPases in glioblastoma cell invasion , 2012, Journal of Cell Science.

[86]  F. Aguet,et al.  The First Five Seconds in the Life of a Clathrin-Coated Pit , 2012, Cell.

[87]  D. Axelrod Fluorescence excitation and imaging of single molecules near dielectric‐coated and bare surfaces: a theoretical study , 2012, Journal of microscopy.

[88]  C. Chakraborty,et al.  Cdc42 negatively regulates intrinsic migration of highly aggressive breast cancer cells , 2012, Journal of cellular physiology.

[89]  E. Fort,et al.  Homodimerization of Amyloid Precursor Protein at the Plasma Membrane: A homoFRET Study by Time-Resolved Fluorescence Anisotropy Imaging , 2012, PloS one.

[90]  S. Cox,et al.  Cdc42 promotes transendothelial migration of cancer cells through β1 integrin , 2012, The Journal of cell biology.

[91]  Qingyong Chen,et al.  Expression analysis of Cdc42 in lung cancer and modulation of its expression by curcumin in lung cancer cell lines. , 2012, International journal of oncology.

[92]  K. Aoki,et al.  Stable expression of FRET biosensors: A new light in cancer research , 2012, Cancer science.

[93]  Susan M. Young,et al.  High-throughput flow cytometry bead-based multiplex assay for identification of Rho GTPase inhibitors. , 2012, Methods in molecular biology.

[94]  E. Fort,et al.  Full-field near-field optical microscope for cell imaging. , 2012, Physical review letters.

[95]  B. Vojnovic,et al.  A Multi-Functional Imaging Approach to High-Content Protein Interaction Screening , 2012, PloS one.

[96]  R. Heintzmann,et al.  Full-field dual-color 100-nm super-resolution imaging reveals organization and dynamics of mitochondrial and ER networks. , 2013, Optics express.

[97]  Y. Imaizumi,et al.  Direct molecular interaction of caveolin-3 with KCa1.1 channel in living HEK293 cell expression system. , 2013, Biochemical and biophysical research communications.

[98]  S. Shaw,et al.  Aurora B Inhibits MCAK Activity through a Phosphoconformational Switch that Reduces Microtubule Association , 2013, Current Biology.

[99]  D. Axelrod Evanescent excitation and emission in fluorescence microscopy. , 2013, Biophysical journal.

[100]  M. Oheim,et al.  Eliminating unwanted far-field excitation in objective-type TIRF. Part II. combined evanescent-wave excitation and supercritical-angle fluorescence detection improves optical sectioning. , 2013, Biophysical journal.

[101]  R. Vale,et al.  Total Internal Reflection Fluorescence Microscopy. , 2015, Cold Spring Harbor protocols.