Sum of Squares Partial Fractions: Application in Modeling of Interconnects in Heterogeneous Integration

Implementation of next generation 2.5/3D technology for heterogeneous integration requires accurate physical models for signal and power integrity design. We demonstrate a Sum-of-Squares (SOS) partial fraction passivity enforcement algorithm using simulated heterogeneous interconnect data.

[1]  A. Engin Passive Scalar Function Approximation Using SOS Polynomials , 2022, IEEE Transactions on Electromagnetic Compatibility.

[2]  A. Engin,et al.  Passive Modeling of One-Port Networks Through SOS Orthogonal Rational Functions , 2022, 2022 IEEE 26th Workshop on Signal and Power Integrity (SPI).

[3]  A. Engin,et al.  AAA Algorithm for Rational Transfer Function Approximation With Stable Poles , 2021, IEEE Letters on Electromagnetic Compatibility Practice and Applications.

[4]  E. Leitgeb,et al.  Broadband Characterization of Co-planar GSG Wirebonds for RF Heterogeneous 2.5D Integration , 2021, 2021 97th ARFTG Microwave Measurement Conference (ARFTG).

[5]  Bjørn Gustavsen,et al.  Passivity assessment and enforcement utilizing eigenpairs information , 2021 .

[6]  Ion Victor Gosea,et al.  Rational approximation of the absolute value function from measurements: a numerical study of recent methods , 2020, ArXiv.

[7]  Lloyd N. Trefethen,et al.  The AAA Algorithm for Rational Approximation , 2016, SIAM J. Sci. Comput..

[8]  Gaofeng Wang,et al.  High-Frequency Modeling of On-Chip Coupled Carbon Nanotube Interconnects for Millimeter-Wave Applications , 2016, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[9]  Anders Hansson,et al.  Sampling method for semidefinite programmes with non-negative Popov function constraints , 2014, Int. J. Control.

[10]  A. Ege Engin,et al.  Passive Multiport RC Model Extraction for Through Silicon Via Interconnects in 3-D ICs , 2014, IEEE Transactions on Electromagnetic Compatibility.

[11]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[12]  T. Harada,et al.  Macromodeling of complex power delivery networks for efficient transient simulation , 2012, 2012 2nd IEEE CPMT Symposium Japan.

[13]  Tom Dhaene,et al.  An algorithm for direct identification of passive transfer matrices with positive real fractions via convex programming , 2011 .

[14]  Alexandre Megretski,et al.  Passive reduced order modeling of multiport interconnects via semidefinite programming , 2010, 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010).

[15]  Sedig Agili,et al.  A simple method for restoring passivity in S-parameters using singular value decomposition , 2010, 2010 Digest of Technical Papers International Conference on Consumer Electronics (ICCE).

[16]  S. Grivet-Talocia,et al.  A Comparative Study of Passivity Enforcement Schemes for Linear Lumped Macromodels , 2008, IEEE Transactions on Advanced Packaging.

[17]  Pablo A. Parrilo,et al.  Explicit SOS decompositions of univariate polynomial matrices and the Kalman-Yakubovich-Popov lemma , 2007, 2007 46th IEEE Conference on Decision and Control.

[18]  A. Antoulas,et al.  A framework for the solution of the generalized realization problem , 2007 .

[19]  Carsten W. Scherer,et al.  Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs , 2006, Math. Program..

[20]  Stefano Grivet-Talocia,et al.  Passivity enforcement via perturbation of Hamiltonian matrices , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[21]  A. Semlyen,et al.  Rational approximation of frequency domain responses by vector fitting , 1999 .

[22]  G. Calafiore,et al.  Data-Driven Extraction of Uniformly Stable and Passive Parameterized Macromodels , 2022, IEEE Access.

[23]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[24]  Neil Genzlinger A. and Q , 2006 .

[25]  C. Sanathanan,et al.  Transfer function synthesis as a ratio of two complex polynomials , 1963 .