STABILITY ANALYSIS AND APPLICATION OF THE EXPONENTIAL TIME DIFFERENCING SCHEMES 1)

Exponential time dierencing schemes are time integration methods that can be eciently combined with spatial spectral approximations to provide very high resolution to the smooth solutions of some linear and nonlinear partial dieren tial equations. We study in this paper the stability properties of some exponential time dierencing schemes. We also present their application to the numerical solution of the scalar Allen-Cahn equation in two and three dimensional spaces.

[1]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[2]  J. M. Keiser,et al.  A New Class of Time Discretization Schemes for the Solution of Nonlinear PDEs , 1998 .

[3]  Constantinos Theodoropoulos,et al.  Equation-Free Multiscale Computation: enabling microscopic simulators to perform system-level tasks , 2002 .

[4]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[5]  Charalambos Makridakis,et al.  Implicit-explicit multistep methods for quasilinear parabolic equations , 1999, Numerische Mathematik.

[6]  Chert,et al.  Applications of semi-implicit Fourier-spectral method to phase field equations , 2004 .

[7]  A. G. Khachaturi︠a︡n Theory of structural transformations in solids , 1983 .

[8]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[9]  S. Cox,et al.  Exponential Time Differencing for Stiff Systems , 2002 .

[10]  Ioannis G. Kevrekidis,et al.  Projective Methods for Stiff Differential Equations: Problems with Gaps in Their Eigenvalue Spectrum , 2002, SIAM J. Sci. Comput..

[11]  E. Weinan Analysis of the heterogeneous multiscale method for ordinary differential equations , 2003 .

[12]  Christopher M Wolverton,et al.  Modeling Solid-State Phase Transformations and Microstructure Evolution , 2001 .

[13]  B. V. Leer,et al.  A quasi-steady state solver for the stiff ordinary differential equations of reaction kinetics , 2000 .

[14]  A VARIATIONAL CONSTRUCTION OF ANISOTROPIC MOBILITY IN PHASE-FIELD SIMULATION , 2005 .

[15]  William L. George,et al.  A Parallel 3D Dendritic Growth Simulator Using the Phase-Field Method , 2002 .

[16]  C. W. Gear,et al.  Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-Level Analysis , 2003 .