Multiwalled carbon nanotubes functionalized with 7-octenyltrichlorosilane and n-octyltrichlorosilane: dispersion in Sylgard®184 silicone and Young’s modulus
暂无分享,去创建一个
Luc Carpentier | Joseph Delhalle | Antonio Fonseca | Janos B. Nagy | Zineb Mekhalif | J. Nagy | G. Tendeloo | J. Delhalle | Z. Mekhalif | J. Colomer | F. Lallemand | A. Fonseca | Gustaaf Van Tendeloo | L. Carpentier | Jean-François Colomer | Fabrice Lallemand | Laurence Vast | L. Vast
[1] J. Delhalle,et al. 7-Octenyltrimethoxysilane, a model coupling molecule to study the adhesion promotion of a silicone elastomer on an Al 2024 alloy , 2009 .
[2] Yong Zhang,et al. Functionalization of multi-wall carbon nanotubes with silane and its reinforcement on polypropylene composites , 2008 .
[3] J. Coleman,et al. High Quality Dispersions of Functionalized Single Walled Nanotubes at High Concentration , 2008 .
[4] Jang‐Kyo Kim,et al. Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites , 2007 .
[5] J. Nagy,et al. Note on the dispersion in perfluoropolyether lubricants of multi-walled carbon nanotubes functionalized with (tridecafluoro-1,1 ,2,2-tetrahydrooctyl)trichlorosilane. , 2007, Journal of nanoscience and nanotechnology.
[6] J. Nagy,et al. Formation of an adherent polyacrylonitrile/carbon nanotubes composite film onto a polyacrylonitrile brush electrografted on copper. , 2007, Journal of nanoscience and nanotechnology.
[7] J. Nagy,et al. Preparation and electrical characterization of a silicone elastomer composite charged with multi-wall carbon nanotubes functionalized with 7-octenyltrichlorosilane , 2007 .
[8] Bodo Fiedler,et al. FUNDAMENTAL ASPECTS OF NANO-REINFORCED COMPOSITES , 2006 .
[9] J. Coleman,et al. Reinforcement of polymers with carbon nanotubes. The role of an ordered polymer interfacial region. Experiment and modeling , 2006 .
[10] J. Rouzaud,et al. Graphitization of carbons synthesized in a confined geometry , 2006 .
[11] Jang‐Kyo Kim,et al. Functionalization of carbon nanotubes using a silane coupling agent , 2006 .
[12] J. Coleman,et al. Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites , 2006 .
[13] J. Coleman,et al. Carbon nanotubes and nanocomposites: electrical, mechanical and flame retardant aspects , 2006 .
[14] Omkaram Nalamasu,et al. Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications. , 2006, Nano letters.
[15] Jae Ryoun Youn,et al. Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites , 2005 .
[16] Eugene M. Terentjev,et al. Photomechanical actuation in polymer–nanotube composites , 2005, Nature materials.
[17] Kankanhalli N. Seetharamu,et al. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes , 2005 .
[18] J. Nagy,et al. Chemical functionalization by a fluorinated trichlorosilane of multi-walled carbon nanotubes , 2004 .
[19] H. Wagner,et al. Mechanical properties of carbon nanoparticle-reinforced elastomers , 2003 .
[20] J. Bai,et al. Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites—experimental investigation , 2003 .
[21] V. M. Castaño,et al. Chemical functionalization of carbon nanotubes through an organosilane , 2002 .
[22] J. Nagy,et al. Control of the outer diameter of thin carbon nanotubes synthesized by catalytic decomposition of hydrocarbons , 2000 .
[23] S. Iijima. Helical microtubules of graphitic carbon , 1991, Nature.
[24] K. Rhee,et al. Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane , 2008 .