Prediction methods improve bus services profitability
暂无分享,去创建一个
Since the bus deregulation (Transport Act 1985) the patronage for bus
services has been decreasing in a county in South of England. Hence,
methods that increase patronage, focus subsidies and stimulate the bus
industry are required. Our surveys and market research identified and
quantified essential factors. The top three factors are price, frequency,
and dependability. The model was further enhanced by taking into
account real time passenger information (RTPI), socio-demographics
and ticket machine data along targeted bus routes. These allowed the
design of predictive models. Here, feature engineering was essential
to boost the solution quality. We compared several models such as
regression, decision tress and random forest. Additionally, traditional
price elasticity formulas have been confirmed. Our results indicate
that more accuracy can be gained using prediction methods based on
the engineered features. This allows to identify routes that have the
potential to increase in profitability - allowing a more focused subsidy
strategy.