The new Neyman type A beta Weibull model with long-term survivors

For the first time, we propose a flexible cure rate survival model by assuming that the number of competing causes of the event of interest follows the Neyman type A distribution and the time to this event has the beta Weibull distribution. This new model can be used to analyze survival data when the hazard rate function is increasing, decreasing, bathtub or unimodal-shaped. It includes some commonly used lifetime distributions and some well-known cure rate models as special cases. Maximum likelihood and non-parametric bootstrap are used to estimate the regression parameters. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and present some ways to perform global influence analysis. The usefulness of the new model is illustrated by means of an application in the medical area.

[1]  A. W. Kemp,et al.  Univariate Discrete Distributions , 1993 .

[2]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[3]  Heleno Bolfarine,et al.  Influence diagnostics in exponentiated-Weibull regression models with censored data , 2006 .

[4]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[5]  M. Puterman,et al.  Mixed Poisson regression models with covariate dependent rates. , 1996, Biometrics.

[6]  Gauss M. Cordeiro,et al.  The log-generalized modified Weibull regression model , 2011 .

[7]  Samuel Kotz,et al.  The beta exponential distribution , 2006, Reliab. Eng. Syst. Saf..

[8]  Jerzy Neyman,et al.  On a New Class of "Contagious" Distributions, Applicable in Entomology and Bacteriology , 1939 .

[9]  J G Ibrahim,et al.  Estimating Cure Rates From Survival Data , 2003, Journal of the American Statistical Association.

[10]  Gilberto A. Paula,et al.  Regression models for grouped survival data: Estimation and sensitivity analysis , 2011, Comput. Stat. Data Anal..

[11]  Joseph G. Ibrahim,et al.  A New Bayesian Model For Survival Data With a Surviving Fraction , 1999 .

[12]  James O. Berger,et al.  Bayesian Analysis for the Poly-Weibull Distribution , 1993 .

[13]  D. N. Prabhakar Murthy,et al.  A modified Weibull distribution , 2003, IEEE Trans. Reliab..

[14]  Min Xie,et al.  Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function , 1996 .

[15]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[16]  J. P. Sy,et al.  Estimation in a Cox Proportional Hazards Cure Model , 2000, Biometrics.

[17]  Francisco Louzada-Neto,et al.  Influence diagnostics for polyhazard models in the presence of covariates , 2008, Stat. Methods Appl..

[18]  P. G. Moore,et al.  Notes on Contagious Distributions in Plant Populations , 1954 .

[19]  David C. Heilbron,et al.  Zero-Altered and other Regression Models for Count Data with Added Zeros , 1994 .

[20]  A Method of Increasing Power of a Test for the Negative Binomial and Neyman Type a Distributions , 1980 .

[21]  J. Boag,et al.  Maximum Likelihood Estimates of the Proportion of Patients Cured by Cancer Therapy , 1949 .

[22]  Vicente G Cancho,et al.  Generalized log-gamma regression models with cure fraction , 2009, Lifetime data analysis.

[23]  On the efficiency of the method of moments and Neyman's type A distribution. , 1949, Biometrika.

[24]  J. Lawless Statistical Models and Methods for Lifetime Data , 2002 .

[25]  Felix Famoye,et al.  Journal of Modern Applied StatisticalMethods Beta-Weibull Distribution: Some Properties and Applications to Censored Data , 2022 .

[26]  A. W. Kemp,et al.  Univariate Discrete Distributions: Johnson/Univariate Discrete Distributions , 2005 .

[27]  Saralees Nadarajah,et al.  General results for the beta Weibull distribution , 2013 .

[28]  D. E. Barton The modality of Neyman's contagious distribution of type a , 1957 .

[29]  Mauricio Lima Barreto,et al.  Log-Burr XII regression models with censored data , 2008, Comput. Stat. Data Anal..

[30]  Feng-Chang Xie,et al.  Diagnostics analysis in censored generalized Poisson regression model , 2007 .

[31]  Josemar Rodrigues,et al.  On the unification of long-term survival models , 2009 .

[32]  J. Ibrahim,et al.  Bayesian local influence for survival models , 2011, Lifetime data analysis.

[33]  Joseph Berkson,et al.  Survival Curve for Cancer Patients Following Treatment , 1952 .

[34]  Josemar Rodrigues,et al.  A Bayesian long-term survival model parametrized in the cured fraction. , 2009, Biometrical journal. Biometrische Zeitschrift.

[35]  A Yu Yakovlev,et al.  Stochastic Models of Tumor Latency and Their Biostatistical Applications , 1996 .

[36]  Melissa J. Dobbie,et al.  Models for zero-inflated count data using the Neyman type A distribution , 2001 .

[37]  Gauss M. Cordeiro,et al.  The log-exponentiated Weibull regression model for interval-censored data , 2010, Comput. Stat. Data Anal..

[38]  B. Efron,et al.  Bootstrap confidence intervals , 1996 .

[39]  J. Ibrahim,et al.  Perturbation selection and influence measures in local influence analysis , 2007, 0803.2986.

[40]  Menggang Yu,et al.  JOINT LONGITUDINAL-SURVIVAL-CURE MODELS AND THEIR APPLICATION TO PROSTATE CANCER , 2004 .

[41]  D. Kundu,et al.  Theory & Methods: Generalized exponential distributions , 1999 .

[42]  Deo Kumar Srivastava,et al.  The exponentiated Weibull family: a reanalysis of the bus-motor-failure data , 1995 .

[43]  Joseph G. Ibrahim,et al.  Bayesian Survival Analysis , 2004 .

[44]  Debasis Kundu,et al.  Generalized Rayleigh distribution: different methods of estimations , 2005, Comput. Stat. Data Anal..

[45]  Heping Zhang,et al.  A diagnostic procedure based on local influence , 2004 .

[46]  Gauss M. Cordeiro,et al.  The beta modified Weibull distribution , 2010, Lifetime data analysis.

[47]  Edwin M. M. Ortega,et al.  Log-Weibull extended regression model: Estimation, sensitivity and residual analysis , 2010 .