Properties of the linear canonical integral transformation.

We provide a general expression and different classification schemes for the general two-dimensional canonical integral transformations that describe the propagation of coherent light through lossless first-order optical systems. Main theorems for these transformations, such as shift, scaling, derivation, etc., together with the canonical integral transforms of selected functions, are derived.

[1]  Olcay Akay,et al.  Fractional convolution and correlation via operator methods and an application to detection of linear FM signals , 2001, IEEE Trans. Signal Process..

[2]  Zeev Zalevsky,et al.  Synthesis of pattern recognition filters for fractional Fourier processing , 1996 .

[3]  Mj Martin Bastiaans,et al.  Propagation law for the generating function of Hermite-Gaussian-type modes in first-order optical systems. , 2005 .

[4]  Mj Martin Bastiaans,et al.  First-order optical systems with real eigenvalues , 2007 .

[5]  Shutian Liu,et al.  Optical image encryption based on the generalized fractional convolution operation , 2001 .

[6]  Haldun M. Özaktas,et al.  The fractional fourier transform , 2001, 2001 European Control Conference (ECC).

[7]  A. Lohmann Image rotation, Wigner rotation, and the fractional Fourier transform , 1993 .

[8]  Joseph Shamir,et al.  First-order optics—a canonical operator representation: lossless systems , 1982 .

[9]  Tatiana Alieva,et al.  Mode mapping in paraxial lossless optics. , 2005, Optics letters.

[10]  Christiane Quesne,et al.  Linear Canonical Transformations and Their Unitary Representations , 1971 .

[11]  Soo-Chang Pei,et al.  Eigenfunctions of linear canonical transform , 2002, IEEE Trans. Signal Process..

[12]  Kurt Bernardo Wolf,et al.  Geometric Optics on Phase Space , 2004 .

[13]  M. Bastiaans,et al.  Synthesis of an arbitrary ABCD system with fixed lens positions. , 2006, Optics letters.

[14]  Z. Zalevsky,et al.  The Fractional Fourier Transform: with Applications in Optics and Signal Processing , 2001 .

[15]  Eugeny Abramochkin,et al.  Generalized Gaussian beams , 2004 .

[16]  Tatiana Alieva,et al.  First-order optical systems with unimodular eigenvalues. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  José A Rodrigo,et al.  Optical system design for orthosymplectic transformations in phase space. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[18]  Tatiana Alieva,et al.  Classification of lossless first-order optical systems and the linear canonical transformation. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[19]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[20]  Zeev Zalevsky,et al.  Space-variant simultaneous detection of several objects by the use of multiple anamorphic fractional-Fourier-transform filters. , 1996, Applied optics.

[21]  Martin J. Bastiaans,et al.  Fractional Transforms in Optical Information Processing , 2005, EURASIP J. Adv. Signal Process..

[22]  S. A. Collins Lens-System Diffraction Integral Written in Terms of Matrix Optics , 1970 .

[23]  Tatiana Alieva,et al.  Alternative representation of the linear canonical integral transform. , 2005, Optics letters.

[24]  K. Wolf,et al.  Fractional Fourier transforms in two dimensions. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.