Local Linear Convergence of the Alternating Direction Method of Multipliers for Nonconvex Separable Optimization Problems

In this paper, we consider the convergence rate of the alternating direction method of multipliers for solving the nonconvex separable optimization problems. Based on the error bound condition, we prove that the sequence generated by the alternating direction method of multipliers converges locally to a critical point of the nonconvex optimization problem in a linear convergence rate, and the corresponding sequence of the augmented Lagrangian function value converges in a linear convergence rate. We illustrate the analysis by applying the alternating direction method of multipliers to solving the nonconvex quadratic programming problems with simplex constraint, and comparing it with some state-of-the-art algorithms, the proximal gradient algorithm, the proximal gradient algorithm with extrapolation, and the fast iterative shrinkage–thresholding algorithm.

[1]  Daniel Boley,et al.  Local Linear Convergence of the Alternating Direction Method of Multipliers on Quadratic or Linear Programs , 2013, SIAM J. Optim..

[2]  Zhi-Quan Luo,et al.  Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems , 2014, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[3]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[4]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[5]  Xiaoming Yuan,et al.  Local Linear Convergence of the Alternating Direction Method of Multipliers for Quadratic Programs , 2013, SIAM J. Numer. Anal..

[6]  Hédy Attouch,et al.  Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality , 2008, Math. Oper. Res..

[7]  Wilfred Kaplan,et al.  A test for copositive matrices , 2000 .

[8]  Xin Chen,et al.  Sparse solutions to random standard quadratic optimization problems , 2013, Math. Program..

[9]  Xiaoming Yuan,et al.  On the convergence of the direct extension of ADMM for three-block separable convex minimization models with one strongly convex function , 2017, Comput. Optim. Appl..

[10]  Guoyin Li,et al.  Douglas–Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems , 2014, Math. Program..

[11]  Wotao Yin,et al.  Global Convergence of ADMM in Nonconvex Nonsmooth Optimization , 2015, Journal of Scientific Computing.

[12]  Zongben Xu,et al.  $L_{1/2}$ Regularization: A Thresholding Representation Theory and a Fast Solver , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[13]  Wotao Yin,et al.  On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers , 2016, J. Sci. Comput..

[14]  Wei Hong Yang,et al.  Linear Convergence of the Alternating Direction Method of Multipliers for a Class of Convex Optimization Problems , 2016, SIAM J. Numer. Anal..

[15]  Guoyin Li,et al.  Global Convergence of Splitting Methods for Nonconvex Composite Optimization , 2014, SIAM J. Optim..

[16]  Fabio Tardella,et al.  New and old bounds for standard quadratic optimization: dominance, equivalence and incomparability , 2008, Math. Program..

[17]  Bo Wen,et al.  Linear Convergence of Proximal Gradient Algorithm with Extrapolation for a Class of Nonconvex Nonsmooth Minimization Problems , 2015, SIAM J. Optim..

[18]  Renato D. C. Monteiro,et al.  Iteration-Complexity of Block-Decomposition Algorithms and the Alternating Direction Method of Multipliers , 2013, SIAM J. Optim..

[19]  D. Gabay Applications of the method of multipliers to variational inequalities , 1983 .

[20]  Benar Fux Svaiter,et al.  Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods , 2013, Math. Program..

[21]  Z.-Q. Luo,et al.  Error bounds and convergence analysis of feasible descent methods: a general approach , 1993, Ann. Oper. Res..

[22]  Paul Tseng,et al.  Error Bound and Convergence Analysis of Matrix Splitting Algorithms for the Affine Variational Inequality Problem , 1992, SIAM J. Optim..

[23]  Bingsheng He,et al.  On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..

[24]  Wotao Yin,et al.  A Block Coordinate Descent Method for Regularized Multiconvex Optimization with Applications to Nonnegative Tensor Factorization and Completion , 2013, SIAM J. Imaging Sci..

[25]  Shiqian Ma,et al.  Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis , 2016, Computational Optimization and Applications.

[26]  Deren Han,et al.  Convergence of alternating direction method for minimizing sum of two nonconvex functions with linear constraints , 2017, Int. J. Comput. Math..

[27]  Panos M. Pardalos,et al.  Continuous Characterizations of the Maximum Clique Problem , 1997, Math. Oper. Res..