Solving an eigenvalue problem with a periodic domain using radial basis functions

A meshless method based on radial basis functions (RBFs) is proposed for solving an eigenvalue problem with a periodic domain. We compare Wendland's and Wu's compactly supported RBFs. The computational experiments examine the accuracy of the method as a result of variation in the number and layout of the original points and in addition, the shape factor. The results obtained from the method are in good agreement with the analytical solutions of the problem.

[1]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[2]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[3]  Tobin A. Driscoll,et al.  Computing eigenmodes ofelliptic operators using radial basis functions , 2004 .

[4]  Alexander I. Fedoseyev,et al.  Continuation for nonlinear Elliptic Partial differential equations discretized by the multiquadric Method , 2000, Int. J. Bifurc. Chaos.

[5]  Guirong Liu,et al.  A LOCAL RADIAL POINT INTERPOLATION METHOD (LRPIM) FOR FREE VIBRATION ANALYSES OF 2-D SOLIDS , 2001 .

[6]  Benny Y. C. Hon,et al.  An efficient numerical scheme for Burgers' equation , 1998, Appl. Math. Comput..

[7]  E. Kansa,et al.  Circumventing the ill-conditioning problem with multiquadric radial basis functions: Applications to elliptic partial differential equations , 2000 .

[8]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..

[9]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[10]  Zongmin Wu,et al.  Compactly supported positive definite radial functions , 1995 .

[11]  S. Mukherjee,et al.  THE BOUNDARY NODE METHOD FOR POTENTIAL PROBLEMS , 1997 .

[12]  A. Chorin Numerical study of slightly viscous flow , 1973, Journal of Fluid Mechanics.

[13]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[14]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[15]  William H. Press,et al.  Numerical recipes in C , 2002 .

[16]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[17]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[18]  YuanTong Gu,et al.  A meshfree method: meshfree weak–strong (MWS) form method, for 2-D solids , 2003 .

[19]  Martin D. Buhmann,et al.  A new class of radial basis functions with compact support , 2001, Math. Comput..

[20]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[21]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[22]  Gui-Rong Liu,et al.  An Introduction to Meshfree Methods and Their Programming , 2005 .