Osmium isotopes in peridotite xenoliths reveal major mid-Proterozoic lithosphere formation under the Transantarctic Mountains

[1]  P. Kelemen,et al.  Deep continental roots and cratons , 2021, Nature.

[2]  J. Scott An updated catalogue of New Zealand’s mantle peridotite and serpentinite , 2020 .

[3]  H. Sigurdsson,et al.  Dating post-Archean lithospheric mantle: Insights from Re-Os and Lu-Hf isotopic systematics of the Cameroon Volcanic Line peridotites , 2020, Geochimica et Cosmochimica Acta.

[4]  D. Pearson,et al.  The complex life cycle of oceanic lithosphere: A study of Yarlung-Zangbo ophiolitic peridotites, Tibet , 2020 .

[5]  John W. Goodge,et al.  Geological and tectonic evolution of the Transantarctic Mountains, from ancient craton to recent enigma , 2020 .

[6]  F. Italiano,et al.  The nature of the West Antarctic Rift System as revealed by noble gases in mantle minerals , 2019, Chemical Geology.

[7]  M. Jackson,et al.  Pacific Lithosphere Evolution Inferred from Aitutaki Mantle Xenoliths , 2019, Journal of Petrology.

[8]  D. Hilton,et al.  Melt-modified lithosphere beneath Ross Island and its role in the tectono-magmatic evolution of the West Antarctic Rift System , 2019, Chemical Geology.

[9]  D. Pearson,et al.  Continent stabilisation by lateral accretion of subduction zone-processed depleted mantle residues; insights from Zealandia , 2019, Earth and Planetary Science Letters.

[10]  A. Luguet,et al.  Dating mantle peridotites using Re-Os isotopes: The complex message from whole rocks, base metal sulfides, and platinum group minerals , 2019, American Mineralogist.

[11]  J. Bédard,et al.  Fossil subduction zone origin for magmas in the Ferrar Large Igneous Province, Antarctica: Evidence from PGE and Os isotope systematics in the Basement Sill of the McMurdo Dry Valleys , 2019, Earth and Planetary Science Letters.

[12]  B. Kjarsgaard,et al.  Diamondiferous Paleoproterozoic mantle roots beneath Arctic Canada: A study of mantle xenoliths from Parry Peninsula and Central Victoria Island , 2018, Geochimica et Cosmochimica Acta.

[13]  T. Paulsen,et al.  Correlation and Late-Stage Deformation of Liv Group Volcanics in the Ross-Delamerian Orogen, Antarctica, from New U-Pb Ages , 2018, The Journal of Geology.

[14]  J. Cottle,et al.  Evaluating the relative roles of crustal growth versus reworking through continental arc magmatism: A case study from the Ross orogen, Antarctica , 2018 .

[15]  Matthew W. Sagar,et al.  High‐ to ultrahigh‐temperature metamorphism in the lower crust: An example resulting from Hikurangi Plateau collision and slab rollback in New Zealand , 2017 .

[16]  J. Vervoort,et al.  Proterozoic crustal evolution of central East Antarctica: Age and isotopic evidence from glacial igneous clasts, and links with Australia and Laurentia , 2017 .

[17]  D. Pearson,et al.  Diffusion-zoned pyroxenes in an isotopically heterogeneous mantle lithosphere beneath the Dunedin Volcanic Group, New Zealand, and their implications for intraplate alkaline magma sources , 2017 .

[18]  R. Walker,et al.  186 Os– 187 Os and highly siderophile element abundance systematics of the mantle revealed by abyssal peridotites and Os-rich alloys , 2017 .

[19]  P. King,et al.  Zealandia: Earth’s Hidden Continent , 2017 .

[20]  D. Pearson,et al.  Mantle depletion and metasomatism recorded in orthopyroxene in highly depleted peridotites , 2016 .

[21]  J. Cottle,et al.  Synchronous alkaline and subalkaline magmatism during the late Neoproterozoic–early Paleozoic Ross orogeny, Antarctica: Insights into magmatic sources and processes within a continental arc , 2016 .

[22]  A. Cooper,et al.  Peridotitic Lithosphere Metasomatized by Volatile-bearing Melts, and its Association with Intraplate Alkaline HIMU-like Magmatism , 2016 .

[23]  C. Fanning,et al.  Mesoarchean and Paleoproterozoic history of the Nimrod Complex, central Transantarctic Mountains, Antarctica: Stratigraphic revisions and relation to the Mawson Continent in East Gondwana , 2016 .

[24]  V. Bennett,et al.  Rapid Cenozoic ingrowth of isotopic signatures simulating “HIMU” in ancient lithospheric mantle: Distinguishing source from process , 2016 .

[25]  T. Ntaflos,et al.  Pervasive, tholeiitic refertilisation and heterogeneous metasomatism in Northern Victoria Land lithospheric mantle (Antarctica) , 2016 .

[26]  S. Piazolo,et al.  The anita peridotite, New Zealand: ultra-depletion and subtle enrichment in sub-arc mantle , 2016 .

[27]  Yuansheng Li,et al.  Temperature, lithosphere‐asthenosphere boundary, and heat flux beneath the Antarctic Plate inferred from seismic velocities , 2015 .

[28]  Candace E Martin,et al.  The longevity of Archean mantle residues in the convecting upper mantle and their role in young continent formation , 2015 .

[29]  S. Cox,et al.  Mixing between enriched lithospheric mantle and crustal components in a short-lived subduction-related magma system, Dry Valleys area, Antarctica: Insights from U-Pb geochronology, Hf isotopes, and whole-rock geochemistry , 2015 .

[30]  J. Hermann,et al.  The Interplay between Melting, Refertilization and Carbonatite Metasomatism in Off-Cratonic Lithospheric Mantle under Zealandia: an Integrated Major, Trace and Platinum Group Element Study , 2015 .

[31]  T. Meisel,et al.  Re-evaluating digestion methods for highly siderophile element and 187Os isotope analysis: Evidence from geological reference materials , 2014 .

[32]  J. Palin,et al.  Metasomatized ancient lithospheric mantle beneath the young Zealandia microcontinent and its role in HIMU‐like intraplate magmatism , 2014 .

[33]  A. Cooper,et al.  Increased mantle heat flow with on-going rifting of the West Antarctic rift system inferred from characterisation of plagioclase peridotite in the shallow Antarctic mantle , 2014 .

[34]  A. Cooper,et al.  Ancient melt depletion overprinted by young carbonatitic metasomatism in the New Zealand lithospheric mantle , 2014, Contributions to Mineralogy and Petrology.

[35]  R. Walker,et al.  Extreme persistence of cratonic lithosphere in the southwest Pacific: Paleoproterozoic Os isotopic signatures in Zealandia , 2013 .

[36]  D. Günther,et al.  Determination of Reference Values for NIST SRM 610–617 Glasses Following ISO Guidelines , 2011 .

[37]  J. Hellstrom,et al.  Iolite: Freeware for the visualisation and processing of mass spectrometric data , 2011 .

[38]  N. Pearson,et al.  The Role of eclogite in the rift-related metasomatism and Cenozoic magmatism of Northern Victoria Land, Antarctica , 2011 .

[39]  R. Maas,et al.  Dating of volcanism and sedimentation in the Skelton Group, Transantarctic Mountains: Implications for the Rodinia-Gondwana transition in southern Victoria Land, Antarctica , 2011 .

[40]  A. Luguet,et al.  Formation of the North Atlantic Craton: Timing and mechanisms constrained from Re–Os isotope and PGE data of peridotite xenoliths from S.W. Greenland , 2010 .

[41]  P. H. Nixon,et al.  Age, Composition and Thermal Characteristics of South African Off-Craton Mantle Lithosphere: Evidence for a Multi-Stage History , 2010 .

[42]  R. Walker,et al.  Interpreting ages from Re–Os isotopes in peridotites , 2009 .

[43]  W. Griffin,et al.  The Composition and Evolution of Lithospheric Mantle: a Re-evaluation and its Tectonic Implications , 2009 .

[44]  V. Ferrini,et al.  Navigational infrastructure at the East Pacific Rise 9°50′N area following the 2005–2006 eruption: Seafloor benchmarks and near‐bottom multibeam surveys , 2008 .

[45]  B. Davy,et al.  Hikurangi Plateau: Crustal structure, rifted formation, and Gondwana subduction history , 2008 .

[46]  A. Luguet,et al.  Precise and accurate 186Os/188Os and 187Os/188Os measurements by Multi-collector Plasma Ionisation Mass Spectrometry, part II: Laser ablation and its application to single-grain Pt–Os and Re–Os geochronology , 2008 .

[47]  M. Hand,et al.  Tectonic Framework and Evolution of the Gawler Craton, Southern Australia , 2007 .

[48]  D. Pearson,et al.  A link between large mantle melting events and continent growth seen in osmium isotopes , 2007, Nature.

[49]  G. Eby,et al.  Geology, geochronology and geochemistry of a basanitic volcano, White Island, Ross Sea, Antarctica , 2007 .

[50]  P. Kelemen,et al.  Consistent olivine Mg# in cratonic mantle reflects Archean mantle melting to the exhaustion of orthopyroxene , 2007 .

[51]  D. Ionov Compositional variations and heterogeneity in fertile lithospheric mantle: peridotite xenoliths in basalts from Tariat, Mongolia , 2007 .

[52]  R. Walker,et al.  Highly siderophile element composition of the Earth’s primitive upper mantle: Constraints from new data on peridotite massifs and xenoliths , 2006 .

[53]  N. Rogers,et al.  Ancient melt extraction from the oceanic upper mantle revealed by Re–Os isotopes in abyssal peridotites from the Mid-Atlantic ridge , 2006 .

[54]  P. Armienti,et al.  Geochemical and O-isotope constraints on the evolution of lithospheric mantle in the Ross Sea rift area (Antarctica) , 2006 .

[55]  C. Hawkesworth,et al.  U series disequilibria: Insights into mantle melting and the timescales of magma differentiation , 2005 .

[56]  R. Carlson,et al.  Physical, chemical, and chronological characteristics of continental mantle , 2005 .

[57]  P. H. Nixon,et al.  Garnet lherzolites from Louwrensia, Namibia: bulk composition and P/T relations , 2004 .

[58]  R. Wysoczanski,et al.  Age, Correlation, and Provenance of the Neoproterozoic Skelton Group, Antarctica: Grenville Age Detritus on the Margin of East Antarctica , 2004, The Journal of Geology.

[59]  M. Handler,et al.  Proterozoic lithosphere in Marie Byrd Land, West Antarctica: Re-Os systematics of spinel peridotite xenoliths , 2003 .

[60]  R. Wysoczanski,et al.  Initiation of magmatism during the Cambrian-Ordovician Ross orogeny in southern Victoria Land, Antarctica , 2002 .

[61]  R. Walker,et al.  Osmium isotopic compositions of mantle xenoliths: A global perspective , 2001 .

[62]  S. Cox,et al.  Isotopic character of Cambro‐Ordovician plutonism, southern Victoria Land, Antarctica , 2000 .

[63]  J. Morgan,et al.  Re-Os isotopic evidence for early differentiation of the Martian mantle , 2000 .

[64]  Cohen,et al.  Ancient mantle in a modern arc: osmium isotopes in izu-bonin-mariana forearc peridotites , 1998, Science.

[65]  V. Bennett,et al.  The persistence of off-cratonic lithospheric mantle: Os isotopic systematics of variably metasomatised southeast Australian xenoliths , 1997 .

[66]  G. Wörner,et al.  Os, Sr, Nd, Pb, O isotope and trace element data from the Ferrar flood basalts, antarctica: evidence for an enriched subcontinental lithospheric source , 1996 .

[67]  P. H. Nixon,et al.  Stabilisation of Archaean lithospheric mantle: a Re-Os isotope study of peridotite xenoliths from th , 1995 .

[68]  L. Reisberg,et al.  Longevity of sub-continental mantle lithosphere from osmium isotope systematics in orogenic peridotite massifs , 1995, Nature.

[69]  S. Arai Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation , 1994 .

[70]  G. Wörner,et al.  Four- and five-phase peridotites from a continental rift system: evidence for upper mantle uplift and cooling at the Ross Sea margin (Antarctica) , 1992 .

[71]  T. Köhler,et al.  Geothermobarometry in Four-phase Lherzolites II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers , 1990 .

[72]  R. Carlson,et al.  Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths: Implications for the chemical evolution of subcontinental mantle , 1989 .

[73]  J. A. Norberg,et al.  Reference Samples for Electron Microprobe Analysis , 1980 .

[74]  D. Pearson,et al.  Distribution and Processing of Highly Siderophile Elements in Cratonic Mantle Lithosphere , 2016 .

[75]  A. Cooper,et al.  Petrogenesis of the Rifted Southern Victoria Land Lithospheric Mantle, Antarctica, Inferred from Petrography, Geochemistry, Thermobarometry and Oxybarometry of Peridotite and Pyroxenite Xenoliths from the Mount Morning Eruptive Centre , 2015 .

[76]  D. Pearson,et al.  3.6 – The Formation and Evolution of Cratonic Mantle Lithosphere – Evidence from Mantle Xenoliths , 2014 .

[77]  Peter A. Cawood,et al.  Highly Refractory Peridotites on Macquarie Island and the Case for Anciently Depleted Domains in the Earth’s Mantle , 2010 .

[78]  G. Dreibus,et al.  Evidence from correlated Ir/Os and Cu/S for late-stage Os mobility in peridotite xenoliths: Implications for Re-Os systematics , 1999 .

[79]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[80]  M. Menzies,et al.  Metasomatised Xenoliths from Foster Crater, Antarctica: Implications for Lithospheric Structure and Processes beneath the Transantarctic Mountain Front , 1988 .