Classification based on L-fuzzy sets

Partitions are at the basis of many processes as classification. They are classically defined in the context of crisp sets. However, partitions based on fuzzy sets have been proven to be more useful in real-life problems. This has motivated several different proposals to extend the definition of partition to the fuzzy sets context. Nevertheless, fuzzy sets evaluated in the real interval (0, 1) are still a too restrictive context for some problems. In this contribution we propose a generalization of the notion of partition based on lattices valued sets. We also study some of their properties.

[1]  J. Goguen L-fuzzy sets , 1967 .

[2]  Constantin Virgil Negoita Insiemi Sfocati e Decisioni, Autori Vari. Edizioni Scientifiche Italiane, New York (1983), 97 , 1983 .

[3]  L. A. Junco,et al.  Localization and fuzzy classification of manufacturing defects in sheets of glass , 1998 .

[4]  Branimir Seselja,et al.  Fuzzy correspondence inequations and equations , 2014, Fuzzy Sets Syst..

[5]  Branimir Seselja,et al.  Representing ordered structures by fuzzy sets: an overview , 2003, Fuzzy Sets Syst..

[6]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[7]  Radim Bělohlávek,et al.  Fuzzy Relational Systems: Foundations and Principles , 2002 .

[8]  S. Ovchinnikov Similarity relations, fuzzy partitions, and fuzzy orderings , 1991 .

[9]  Bernard De Baets,et al.  T -partitions , 1998 .

[10]  M. K. Chakraborty,et al.  On fuzzy equivalence I , 1983 .

[11]  Francesc Esteva,et al.  Review of Triangular norms by E. P. Klement, R. Mesiar and E. Pap. Kluwer Academic Publishers , 2003 .

[12]  J. Bezdek,et al.  Fuzzy partitions and relations; an axiomatic basis for clustering , 1978 .

[13]  Susana Montes,et al.  Compatibility of t-norms with the concept of epsilon-partition , 2007, Inf. Sci..

[14]  Enrique H. Ruspini,et al.  A New Approach to Clustering , 1969, Inf. Control..

[15]  B. Forte,et al.  Sull'informazione associata alle esperienze incomplete , 1968 .

[16]  Inés Couso,et al.  Fuzzy δ-ɛ-partitions , 2003 .

[17]  Inés Couso,et al.  One-to-one correspondences between ε-partitions, (1-ε)-equivalences and ε-pseudometrics , 2001, Fuzzy Sets Syst..

[18]  Miroslav Ciric,et al.  Fuzzy equivalence relations and their equivalence classes , 2007, Fuzzy Sets Syst..

[19]  Branimir Seselja,et al.  Completion of ordered structures by cuts of fuzzy sets: an overview , 2003, Fuzzy Sets Syst..

[20]  Dan Dumitrescu,et al.  Fuzzy partitions with the connectives T∞, S∞ , 1992 .

[21]  D. Markechová The entropy of fuzzy dynamical systems and generators , 1992 .

[22]  Chin-Liang Chang Fuzzy sets and pattern recognition , 1967 .

[23]  S. K. Bhakat,et al.  q-similitudes and q-fuzzy partitions , 1992 .

[24]  D. Butnariu Additive fuzzy measures and integrals, III , 1983 .

[25]  Branimir Seselja,et al.  On lattice valued up-sets and down-sets , 2010, Fuzzy Sets Syst..

[26]  Branimir Seselja,et al.  Lattice-valued approach to closed sets under fuzzy relations: Theory and applications , 2011, Comput. Math. Appl..

[27]  Radko Mesiar,et al.  Triangular norms on product lattices , 1999, Fuzzy Sets Syst..