Mass and energy balance of the carbonization of babassu nutshell as affected by temperature

The objective of this work was to evaluate the carbonization yield of babassu nutshell as affected by final temperature, as well as the energy losses involved in the process. Three layers constituting the babassu nut, that is, the epicarp, mesocarp and endocarp, were used together. The material was carbonized, considering the following final temperatures: 450, 550, 650, 750, and 850oC. The following were evaluated: energy and charcoal yields, pyroligneous liquid, non-condensable gases, and fixed carbon. The use of babassu nutshell can be highly feasible for charcoal production. The yield of charcoal from babassu nutshell carbonization was higher than that reported in the literature for Eucalyptus wood carbonization, considering the final temperature of 450oC. Charcoal and energy yields decreased more sharply at lower temperatures, with a tendency to stabilize at higher temperatures. The energy yields obtained can be considered satisfactory, with losses between 45 and 52% (based on higher heating value) and between 43 and 49% (based on lower heating value) at temperatures ranging from 450 to 850oC, respectively. Yields in fixed carbon and pyroligneous liquid are not affected by the final carbonization temperature.

[1]  Carlos R Reis,et al.  Erratum to: the ER stress inducer DMC enhances TRAIL-induced apoptosis in glioblastoma , 2014, SpringerPlus.

[2]  T. de Paula Protásio,et al.  Babassu nut residues: potential for bioenergy use in the North and Northeast of Brazil , 2014, SpringerPlus.

[3]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[4]  Ana Flávia Neves Mendes Castro,et al.  Análise multivariada para seleção de clones de eucalipto destinados à produção de carvão vegetal , 2013 .

[5]  Aylson Costa Oliveira,et al.  Influence of Chemical Composition of Eucalyptus Wood on Gravimetric Yield and Charcoal Properties , 2013 .

[6]  Paulo Fernando Trugilho,et al.  Potencial siderúrgico e energético do carvão vegetal de clones de Eucalyptus spp aos 42 meses de idade , 2013 .

[7]  Thomas Aicher,et al.  The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis , 2013 .

[8]  Paulo Fernando Trugilho,et al.  Seleção de Clones de Eucalyptus para a produção de carvão vegetal e bioenergia por meio de técnicas univariadas e multivariadas , 2013 .

[9]  Thiago Campos Monteiro,et al.  Influência da temperatura no rendimento dos produtos da carbonização de Eucalyptus microcorys , 2013 .

[10]  Aylson Costa Oliveira,et al.  Quality of Wood and Charcoal from Eucalyptus Clones for Ironmaster Use , 2012 .

[11]  J. D. Rocha,et al.  Produçao de briquetes e péletes a partir de resíduos agrícolas, agroindustriais e florestais , 2012 .

[12]  Paulo Fernando Trugilho,et al.  Qualidade e rendimento do carvão vegetal de um clone híbrido de Eucalyptus grandis x Eucalyptus urophylla , 2012 .

[13]  Paulo Fernando Trugilho,et al.  Composição da madeira e do carvão vegetal de Eucalyptus urophylla em diferentes locais de plantio , 2012 .

[14]  Armando G. McDonald,et al.  Effect of Temperature on Biochar Product Yield from Selected Lignocellulosic Biomass in a Pyrolysis Process , 2012 .

[15]  G. Salah,et al.  Modeling Dominant Height Growth in Planted Pinus pinea Stands in Northwest of Tunisia , 2012 .

[16]  Javier Bilbao,et al.  Influence of temperature on biomass pyrolysis in a conical spouted bed reactor , 2012 .

[17]  Paulo Fernando Trugilho,et al.  Avaliação de clones de Eucalyptus em diferentes locais visando à produção de carvão vegetal , 2011 .

[18]  Paulo Fernando Trugilho,et al.  Avaliação da qualidade do carvão vegetal de Qualea parviflora , 2011 .

[19]  Claudio F. Lima,et al.  Determination of Eucalyptus spp lignin S/G ratio: a comparison between methods. , 2010, Bioresource technology.

[20]  J. Nowakowskia,et al.  Lignin fast pyrolysis: Results from an international collaboration , 2010 .

[21]  Marcos Alexandre Teixeira Babassu—A new approach for an ancient Brazilian biomass , 2008 .

[22]  Haiping Yang,et al.  Characteristics of hemicellulose, cellulose and lignin pyrolysis , 2007 .

[23]  Ayhan Demirbas,et al.  Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues , 2004 .

[24]  Paulo Fernando Trugilho,et al.  INFLUÊNCIA DA TEMPERATURA FINAL DE CARBONIZAÇÃO NAS CARACTERÍSTICAS FÍSICAS E QUÍMICAS DO CARVÃO VEGETAL DE JATOBÁ (Himenea courbaril L.) , 2001 .

[25]  P. F. Trugilho,et al.  Influence of final carbonization temperature in the physical and chemical characteristics of the jatobá (Himenea courbaril L.) charcoal. , 2001 .

[26]  F. G. Emmerich,et al.  Babassu charcoal: A sulfurless renewable thermo-reducing feedstock for steelmaking , 1996 .

[27]  J. Brito,et al.  Endocarpos de babacu e de macauba comparados a madeira de eucalyptus grandis para a producao de carvao vegetal , 1987 .