Fuzzy Linguistic Query-based User Profile Learning by Multiobjective Genetic Algorithms

In this paper, a multiobjective genetic algorithm is proposed to automatically learn persistent fuzzy linguistic queries for text retrieval applications. These queries are able to represent user's long-term standing information needs in a more interpretable way than the classical "bag of words" user profile structure. Thanks to its multiobjective nature, the introduced genetic fuzzy system is able to build different queries for the same information need in a single run, with a different trade-off between precision and recall. The experiments performed on the classical CACM collection show that although the different queries obtained from our genetic fuzzy system are less accurate in the retrieval task than those derived by one state-of-the-art bag of words method, they compose more flexible, comprehensible and expressive user profiles

[1]  Francisco Herrera,et al.  Ten years of genetic fuzzy systems: current framework and new trends , 2004, Fuzzy Sets Syst..

[2]  Oscar Cordón,et al.  Special issue on soft computing applications to intelligent information retrieval on the Internet , 2003, Int. J. Approx. Reason..

[3]  Martin Smith,et al.  The use of genetic programming to build Boolean queries for text retrieval through relevance feedback , 1997, J. Inf. Sci..

[4]  Oscar Cordón,et al.  Fuzzy logic and multiobjective evolutionary algorithms as soft computing tools for persistent query learning in text retrieval environments , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[5]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[6]  Oscar Cordón,et al.  A model of fuzzy linguistic IRS based on multi-granular linguistic information , 2003, Int. J. Approx. Reason..

[7]  Oscar Cordón,et al.  A new evolutionary algorithm combining simulated annealing and genetic programming for relevance feedback in fuzzy information retrieval systems , 2002, Soft Comput..

[8]  Fabio Crestani,et al.  Soft Computing in Information Retrieval , 2000 .

[9]  Oscar Cordón,et al.  A review on the application of evolutionary computation to information retrieval , 2003, Int. J. Approx. Reason..

[10]  O. Cordón,et al.  Automatic Learning of Multiple Extended Boolean Queries by Multiobjective GA-P Algorithms , 2004 .

[11]  Francisco Herrera,et al.  Other Genetic Fuzzy Rule-Based System Paradigms , 2001 .

[12]  Philip R. Thrift,et al.  Fuzzy Logic Synthesis with Genetic Algorithms , 1991, ICGA.

[13]  H. Ishibuchi Genetic fuzzy systems: evolutionary tuning and learning of fuzzy knowledge bases , 2004 .

[14]  Oscar Cordón,et al.  Analyzinig the Performance of a Multiobjective GA-P Algorithm for Learning Fuzzy Queries in a Machine Learning Environment , 2003, IFSA.

[15]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[16]  Peretz Shoval,et al.  Information Filtering: Overview of Issues, Research and Systems , 2001, User Modeling and User-Adapted Interaction.

[17]  Gary Marchionini,et al.  A Conceptual Framework for Text Filtering , 1996 .

[18]  F. Gomide,et al.  Ten years of genetic fuzzy systems: current framework and new trends , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[19]  Francisco Herrera,et al.  Aggregation operators for linguistic weighted information , 1997, IEEE Trans. Syst. Man Cybern. Part A.

[20]  Félix de Moya Anegón,et al.  A GA-P algorithm to automatically formulate extended Boolean queries for a fuzzy information retrieval system , 2000 .

[21]  Gloria Bordogna,et al.  Fuzzy Approaches to Extend Boolean Information Retrieval , 1995 .

[22]  C. Zheng,et al.  ; 0 ; , 1951 .

[23]  Weiguo Fan,et al.  Effective profiling of consumer information retrieval needs: a unified framework and empirical comparison , 2005, Decis. Support Syst..

[24]  Vidroha Debroy,et al.  Genetic Programming , 1998, Lecture Notes in Computer Science.

[25]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[26]  PathakPraveen,et al.  Effective profiling of consumer information retrieval needs , 2005 .

[27]  Francisco Herrera,et al.  A fusion approach for managing multi-granularity linguistic term sets in decision making , 2000, Fuzzy Sets Syst..

[28]  Enrique Herrera-Viedma,et al.  Improving the learning of Boolean queries by means of a multiobjective IQBE evolutionary algorithm , 2006, Inf. Process. Manag..

[29]  D. Kraft,et al.  An extended fuzzy linguistic approach to generalize Boolean information retrieval , 1994 .

[30]  Donald H. Kraft,et al.  GENETIC ALGORITHMS FOR QUERY OPTIMIZATION IN INFORMATION RETRIEVAL: RELEVANCE FEEDBACK , 1997 .

[31]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[32]  Enrique Herrera-Viedma,et al.  Modeling the retrieval process for an information retrieval system using an ordinal fuzzy linguistic approach , 2001, J. Assoc. Inf. Sci. Technol..