A Parametric Computational Model of the Action Potential of Pacemaker Cells

Objective: A flexible, efficient, and verifiable pacemaker cell model is essential to the design of real-time virtual hearts that can be used for closed-loop validation of cardiac devices. A new parametric model of pacemaker action potential is developed to address this need. Methods: The action potential phases are modeled using hybrid automaton with one piecewise-linear continuous variable. The model can capture rate-dependent dynamics, such as action potential duration restitution, conduction velocity restitution, and overdrive suppression by incorporating nonlinear update functions. Simulated dynamics of the model compared well with previous models and clinical data. Conclusion: The results show that the parametric model can reproduce the electrophysiological dynamics of a variety of pacemaker cells, such as sinoatrial node, atrioventricular node, and the His-Purkinje system, under varying cardiac conditions. Significance: This is an important contribution toward closed-loop validation of cardiac devices using real-time heart models.

[1]  H S Marcus,et al.  Evaluation of Sino‐atrial Node Function in Man by Overdrive Suppression , 1971, Circulation.

[2]  J. Kupersmith,et al.  Effects of Sudden Change in Cycle Length on Human Atrial, Atrioventricular Nodal and Ventricular Refractory Periods , 1981, Circulation.

[3]  HERWIG SCHMIDINGER,et al.  Determinants of Subsidiary Ventricular Pacemaker Suppression in Man , 1991, Pacing and clinical electrophysiology : PACE.

[4]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[5]  J. Kugler,et al.  Sinus node dysfunction , 1994 .

[6]  SHIMON ROSENHECK,et al.  The Effect of Overdrive Pacing Rate and Duration on Ventricular Escape Rhythms in Patients with Chronic Complete Atrioventricular Block , 1994, Pacing and clinical electrophysiology : PACE.

[7]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[8]  H. Nagaraja,et al.  Heart rate variability: origins, methods, and interpretive caveats. , 1997, Psychophysiology.

[9]  M. Courtemanche,et al.  Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. , 1998, The American journal of physiology.

[10]  Ronald Wilders,et al.  Computer modelling of the sinoatrial node , 2007, Medical & Biological Engineering & Computing.

[11]  S. Smolka,et al.  Modelling excitable cells using cycle-linear hybrid automata. , 2008, IET systems biology.

[12]  D. Noble,et al.  Mathematical models of the electrical action potential of Purkinje fibre cells , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  Ziad F. Issa,et al.  CHAPTER 5 – Sinus Node Dysfunction , 2009 .

[14]  Ziad F. Issa,et al.  CHAPTER 1 – Electrophysiological Mechanisms of Cardiac Arrhythmias , 2009 .

[15]  M R Boyett,et al.  One-dimensional mathematical model of the atrioventricular node including atrio-nodal, nodal, and nodal-his cells. , 2009, Biophysical journal.

[16]  Robert H. Anderson,et al.  Molecular Architecture of the Human Sinus Node: Insights Into the Function of the Cardiac Pacemaker , 2009, Circulation.

[17]  H. Mond,et al.  The 11th World Survey of Cardiac Pacing and Implantable Cardioverter‐Defibrillators: Calendar Year 2009–A World Society of Arrhythmia's Project , 2011, Pacing and clinical electrophysiology : PACE.

[18]  Bruno Legeard,et al.  A taxonomy of model‐based testing approaches , 2012, Softw. Test. Verification Reliab..

[19]  Ziad F. Issa Chapter 8 – Sinus Node Dysfunction , 2012 .

[20]  John Sapp,et al.  Atrial Pace on PVC Algorithm Inducing Ventricular Fibrillation , 2012, Pacing and clinical electrophysiology : PACE.

[21]  Ziad F. Issa,et al.  Chapter 3 – Electrophysiological Mechanisms of Cardiac Arrhythmias , 2012 .

[22]  Zhihao Jiang,et al.  Cyber–Physical Modeling of Implantable Cardiac Medical Devices , 2012, Proceedings of the IEEE.

[23]  S. Barold,et al.  Automatic Mode Switching Induced by a Ventricular Bigeminal Rhythm: What Is the Mechanism? , 2012, Pacing and clinical electrophysiology : PACE.

[24]  Achilles J. Pappano 2 – Excitation: The Cardiac Action Potential , 2013 .

[25]  Taolue Chen,et al.  Quantitative verification of implantable cardiac pacemakers over hybrid heart models , 2014, Inf. Comput..

[26]  Michael A. Colman,et al.  Development of a Family of Regional Cell Models , 2014 .

[27]  Erick A. Perez Alday,et al.  Recent progress in multi-scale models of the human atria , 2014 .

[28]  Partha S. Roop,et al.  Modular code generation for emulating the electrical conduction system of the human heart , 2016, 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[29]  Jichao Zhao,et al.  Human sinoatrial node structure: 3D microanatomy of sinoatrial conduction pathways. , 2016, Progress in biophysics and molecular biology.

[30]  Partha S. Roop,et al.  Requirements-centric closed-loop validation of implantable cardiac devices , 2016, 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[31]  Partha S. Roop,et al.  Hybrid automata models of cardiac ventricular electrophysiology for real-time computational applications , 2016, 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[32]  Partha S. Roop,et al.  Towards the Emulation of the Cardiac Conduction System for Pacemaker Testing , 2016, ArXiv.

[33]  S. Severi,et al.  Computational analysis of the human sinus node action potential: model development and effects of mutations , 2017, The Journal of physiology.