Well-posedness and numerical approximation of a fractional diffusion equation with a nonlinear variable order

We prove well-posedness and regularity of solutions to a fractional diffusion porous media equation with a variable fractional order that may depend on the unknown solution. We present a linearly implicit time-stepping method to linearize and discretize the equation in time, and present rigorous analysis for the convergence of numerical solutions based on proved regularity results.

[1]  L. Grafakos Classical Fourier Analysis , 2010 .

[2]  L. Nikolova,et al.  On ψ- interpolation spaces , 2009 .

[3]  A. Lunardi Analytic Semigroups and Optimal Regularity in Parabolic Problems , 2003 .

[4]  Bangti Jin,et al.  Two Fully Discrete Schemes for Fractional Diffusion and Diffusion-Wave Equations with Nonsmooth Data , 2016, SIAM J. Sci. Comput..

[5]  C. Lubich Convolution Quadrature Revisited , 2004 .

[6]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[7]  Vidar Thomée,et al.  Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel , 1992 .

[8]  Hongguang Sun,et al.  A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications , 2019, Fractional Calculus and Applied Analysis.

[9]  Rina Schumer,et al.  Fractal mobile/immobile solute transport , 2003 .

[10]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[11]  William McLean,et al.  Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation , 2009, Numerical Algorithms.

[12]  Hongbin Zhan,et al.  Reactive Transport of Nutrients and Bioclogging During Dynamic Disconnection Process of Stream and Groundwater , 2019, Water Resources Research.

[13]  George E. King,et al.  Hydraulic Fracturing 101: What Every Representative, Environmentalist, Regulator, Reporter, Investor, University Researcher, Neighbor and Engineer Should Know About Estimating Frac Risk and Improving Frac Performance in Unconventional Gas and Oil Wells , 2012 .

[14]  L. Weis,et al.  A New Approach to Maximal Lp -Regularity , 2019, Evolution Equations and Their Applications in Physical and Life Sciences.

[15]  Bangti Jin,et al.  Correction of High-Order BDF Convolution Quadrature for Fractional Evolution Equations , 2017, SIAM J. Sci. Comput..

[16]  M. Meerschaert,et al.  Stochastic Models for Fractional Calculus , 2011 .

[17]  Kassem Mustapha,et al.  FEM for time-fractional diffusion equations, novel optimal error analyses , 2016, Math. Comput..

[18]  Masahiro Yamamoto,et al.  Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients , 2017, 1703.07160.

[19]  C. Lubich Convolution quadrature and discretized operational calculus. I , 1988 .

[20]  El Maati Ouhabaz Gaussian estimates and holomorphy of semigroups , 1995 .

[21]  Vidar Thomée,et al.  Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term , 1996, Math. Comput..

[22]  Gandossi Luca,et al.  An overview of hydraulic fracturing and other formation stimulation technologies for shale gas production , 2013 .

[23]  Jian-Guo Liu,et al.  A Discretization of Caputo Derivatives with Application to Time Fractional SDEs and Gradient Flows , 2019, SIAM J. Numer. Anal..

[24]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[25]  Bangti Jin,et al.  Subdiffusion with a time-dependent coefficient: Analysis and numerical solution , 2018, Math. Comput..

[26]  Yong Zhang,et al.  Linking aquifer spatial properties and non-Fickian transport in mobile–immobile like alluvial settings , 2014 .

[27]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[28]  D. Schötzau,et al.  Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations , 2014 .

[29]  Buyang Li,et al.  Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations , 2016, Math. Comput..

[30]  Lydéric Bocquet,et al.  Activated desorption at heterogeneous interfaces and long-time kinetics of hydrocarbon recovery from nanoporous media , 2016, Nature Communications.

[31]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[32]  Bangti Jin,et al.  An analysis of the Crank–Nicolson method for subdiffusion , 2016, 1607.06948.

[33]  Lehel Banjai,et al.  Efficient high order algorithms for fractional integrals and fractional differential equations , 2018, Numerische Mathematik.

[34]  Carl F. Lorenzo,et al.  Variable Order and Distributed Order Fractional Operators , 2002 .

[35]  R. Rannacher,et al.  On the Smoothing Property of the Galerkin Method for Parabolic Equations , 1982 .

[36]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[37]  Jiwei Zhang,et al.  A Discrete Grönwall Inequality with Applications to Numerical Schemes for Subdiffusion Problems , 2018, SIAM J. Numer. Anal..

[38]  Rina Schumer,et al.  Fractional Dispersion, Lévy Motion, and the MADE Tracer Tests , 2001 .

[39]  Leigh C. Becker Resolvents and solutions of weakly singular linear Volterra integral equations , 2011 .

[40]  Kassem Mustapha,et al.  A Discontinuous Petrov-Galerkin Method for Time-Fractional Diffusion Equations , 2014, SIAM J. Numer. Anal..

[41]  Chuanju Xu,et al.  Error Analysis of a High Order Method for Time-Fractional Diffusion Equations , 2016, SIAM J. Sci. Comput..

[42]  Xiangcheng Zheng,et al.  Wellposedness and regularity of the variable-order time-fractional diffusion equations , 2019, Journal of Mathematical Analysis and Applications.

[43]  Natalia Kopteva,et al.  Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions , 2017, Math. Comput..

[44]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[45]  Kassem Mustapha,et al.  Time-stepping discontinuous Galerkin methods for fractional diffusion problems , 2014, Numerische Mathematik.

[46]  Masahiro Yamamoto,et al.  On Time-Fractional Diffusion Equations with Space-Dependent Variable Order , 2017, Annales Henri Poincaré.

[47]  D. Benson,et al.  Fractional Dispersion, Lévy Motion, and the MADE Tracer Tests , 2001 .

[48]  Philippe C. Baveye,et al.  Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials , 1998 .

[49]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[50]  Y. Chen,et al.  Variable-order fractional differential operators in anomalous diffusion modeling , 2009 .

[51]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[52]  J. K. Hunter,et al.  Measure Theory , 2007 .

[53]  K ASSEM,et al.  Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations , 2014 .

[54]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[55]  Eduardo Cuesta,et al.  Convolution quadrature time discretization of fractional diffusion-wave equations , 2006, Math. Comput..

[56]  William McLean,et al.  Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation , 2011, Numerical Algorithms.

[57]  Jose L. Gracia,et al.  Error Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation , 2017, SIAM J. Numer. Anal..

[58]  Kassem Mustapha,et al.  Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation , 2012 .