The estimation of copulas : theory and practice

INTRODUCTION Copulas are a way of formalising dependence structures of random vectors. Although they have been known about for a long time (Sklar (1959)), they have been rediscovered relatively recently in applied sciences (biostatistics, reliability, biology, etc). In finance, they have become a standard tool with broad applications: multiasset pricing (especially complex credit derivatives), credit portfolio modelling, risk management, etc. For example, see Li (1999), Patton (2001) and Longin and Solnik (1995). Although the concept of copulas is well understood, it is now recognised that their empirical estimation is a harder and trickier task. Many traps and technical difficulties are present, and these are, most of the time, ignored or underestimated by practitioners. The problem is that the estimation of copulas implies usually that every marginal distribution of the underlying random vectors must be evaluated and plugged into an estimated multivariate distribution. Such a procedure produces unexpected and unusual effects with respect to the usual statistical procedures: non-standard limiting behaviours, noisy estimations, etc (eg, see the discussion in Fermanian and Scaillet, 2005). In this chapter, we focus on the practical issues practitioners are faced with, in particular concerning estimation and visualisation. 1

[1]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[2]  Hans-Georg Müller,et al.  Smooth optimum kernel estimators near endpoints , 1991 .

[3]  Andrew J. Patton Modelling Time-Varying Exchange Rate Dependence Using the Conditional Copula , 2001 .

[4]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[5]  J. Mielniczuk,et al.  Estimating the density of a copula function , 1990 .

[6]  Eugene F. Schuster,et al.  Incorporating support constraints into nonparametric estimators of densities , 1985 .

[7]  F. Longin,et al.  Is the Correlation in International Equity Returns Constant: 1960-90? , 1995 .

[8]  Taoufik Bouezmarni,et al.  Consistency of the beta kernel density function estimator , 2003 .

[9]  L. Devroye,et al.  Nonparametric density estimation : the L[1] view , 1987 .

[10]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[11]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[12]  Pierre Hominal,et al.  Estimation non paramétrique de la densité compte-tenu d'informations sur le support , 1979 .

[13]  M. Wegkamp,et al.  Weak Convergence of Empirical Copula Processes , 2004 .

[14]  Frank E. Harrell,et al.  A new distribution-free quantile estimator , 1982 .

[15]  Gunky Kim,et al.  Robustness of a semiparametric estimator of a copula , 2004 .

[16]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[17]  T. Bouezmarni,et al.  Bernstein estimator for unbounded density function , 2007 .

[18]  Behnen Konrad,et al.  RANK ESTIMATORS OF SCORES FOR TESTING INDEPENDENCE , 1985 .

[19]  Jean-David Fermanian,et al.  Financial Valuation and Risk Management Working Paper No . 157 Some Statistical Pitfalls in Copula Modeling for Financial Applications , 2004 .

[20]  L. Devroye,et al.  Nonparametric Density Estimation: The L 1 View. , 1985 .

[21]  R. John,et al.  Boundary modification for kernel regression , 1984 .

[22]  Xiaohong Chen,et al.  Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification , 2006 .

[23]  O. Scaillet,et al.  Financial Valuation and Risk Management Working Paper No . 62 On the Way to Recovery : A Nonparametric Bias Free Estimation of Recovery Rate Densities , 2003 .

[24]  O. Scaillet,et al.  Nonparametric Estimation of Copulas for Time Series , 2002 .

[25]  M. C. Jones,et al.  Simple boundary correction for kernel density estimation , 1993 .

[26]  James Stephen Marron,et al.  Transformations in Density Estimation: Rejoinder , 1991 .

[27]  T. Louis,et al.  Inferences on the association parameter in copula models for bivariate survival data. , 1995, Biometrics.

[28]  H. Müller,et al.  Kernel estimation of regression functions , 1979 .

[29]  Peter Jaeckel,et al.  Monte Carlo methods in finance , 2002 .

[30]  A. Ullah,et al.  Nonparametric Econometrics , 1999 .

[31]  B. M. Brown,et al.  Beta‐Bernstein Smoothing for Regression Curves with Compact Support , 1999 .

[32]  David X. Li On Default Correlation: A Copula Function Approach , 1999 .

[33]  Eric Fournié,et al.  Monte Carlo Methods in Finance , 2002 .

[34]  Wolfgang Härdle,et al.  APPLIED NONPARAMETRIC METHODS , 1992 .

[35]  C. J. Stone,et al.  Optimal Rates of Convergence for Nonparametric Estimators , 1980 .

[36]  William A. Brock,et al.  A Nonparametric Test For Independence Of A Multivariate Time Series , 1989 .

[37]  Jean-David Fermanian,et al.  Copulas of a Vector-Valued Stationary Weakly Dependent Process , 2005 .