On the numerical solution ofAX −XB =C
暂无分享,去创建一个
[1] F. Chatelin. Valeurs propres de matrices , 1988 .
[2] Harald K. Wimmer,et al. Linear matrix equations, controllability and observability, and the rank of solutions , 1988 .
[3] Nicholas J. Higham,et al. Perturbation theory and backward error forAX−XB=C , 1993 .
[4] Roland W. Freund,et al. A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..
[5] Richard H. Bartels,et al. Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.
[6] J. Varah. On the Separation of Two Matrices , 1979 .
[7] J. Demmel. Computing stable eigendecompositions of matrices , 1986 .
[8] J. Hearon,et al. Nonsingular solutions of TA−BT=C , 1977 .
[9] Daniel Boley. Krylov space methods on state-space control models , 1994 .
[10] R. A. Smith,et al. Matrix calculations for Liapunov quadratic forms , 1966 .
[11] Lloyd N. Trefethen,et al. A Hybrid GMRES Algorithm for Nonsymmetric Linear Systems , 1992, SIAM J. Matrix Anal. Appl..
[12] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[13] Marlis Hochbruck,et al. Preconditioned Krylov Subspace Methods for Lyapunov Matrix Equations , 1995, SIAM J. Matrix Anal. Appl..
[14] Valeria Simoncini,et al. Arnoldi-Riccati method for large eigenvalue problems , 1996 .
[15] G. Golub,et al. A Hessenberg-Schur method for the problem AX + XB= C , 1979 .
[16] R. Hartwig,et al. Resultants and the Solution of $AX - XB = - C$ , 1972 .
[17] I. Jaimoukha,et al. Krylov subspace methods for solving large Lyapunov equations , 1994 .
[18] Er-Chieh Ma. A Finite Series Solution of the Matrix Equation $AX - XB = C$ , 1966 .
[19] L. Reichel,et al. Krylov-subspace methods for the Sylvester equation , 1992 .
[20] V. Popov. Invariant Description of Linear, Time-Invariant Controllable Systems , 1972 .
[21] Shankar P. Bhattacharyya,et al. Controllability, observability and the solution of AX - XB = C , 1981 .
[22] W. Niethammer,et al. SOR for AX−XB=C , 1991 .
[23] N. Higham. The Test Matrix Toolbox for MATLAB , 1993 .