On the numerical solution ofAX −XB =C

In this note we analyze the numerical solution ofAX −XB =C when a Galerkin method is applied, assuming thatB has much smaller size thanA. We show that the corresponding Galerkin equation can be obtained from the truncation of the original problem, if matrix polynomials are used for writing the analytical solutionX. Moreover, we provide some relations between the separation ofA andB in their natural space and that in the projected space. Experimental tests validate some of the theoretical results and show the rate of applicability of the method with respect to a standard linear system solver.

[1]  F. Chatelin Valeurs propres de matrices , 1988 .

[2]  Harald K. Wimmer,et al.  Linear matrix equations, controllability and observability, and the rank of solutions , 1988 .

[3]  Nicholas J. Higham,et al.  Perturbation theory and backward error forAX−XB=C , 1993 .

[4]  Roland W. Freund,et al.  A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..

[5]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[6]  J. Varah On the Separation of Two Matrices , 1979 .

[7]  J. Demmel Computing stable eigendecompositions of matrices , 1986 .

[8]  J. Hearon,et al.  Nonsingular solutions of TA−BT=C , 1977 .

[9]  Daniel Boley Krylov space methods on state-space control models , 1994 .

[10]  R. A. Smith,et al.  Matrix calculations for Liapunov quadratic forms , 1966 .

[11]  Lloyd N. Trefethen,et al.  A Hybrid GMRES Algorithm for Nonsymmetric Linear Systems , 1992, SIAM J. Matrix Anal. Appl..

[12]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[13]  Marlis Hochbruck,et al.  Preconditioned Krylov Subspace Methods for Lyapunov Matrix Equations , 1995, SIAM J. Matrix Anal. Appl..

[14]  Valeria Simoncini,et al.  Arnoldi-Riccati method for large eigenvalue problems , 1996 .

[15]  G. Golub,et al.  A Hessenberg-Schur method for the problem AX + XB= C , 1979 .

[16]  R. Hartwig,et al.  Resultants and the Solution of $AX - XB = - C$ , 1972 .

[17]  I. Jaimoukha,et al.  Krylov subspace methods for solving large Lyapunov equations , 1994 .

[18]  Er-Chieh Ma A Finite Series Solution of the Matrix Equation $AX - XB = C$ , 1966 .

[19]  L. Reichel,et al.  Krylov-subspace methods for the Sylvester equation , 1992 .

[20]  V. Popov Invariant Description of Linear, Time-Invariant Controllable Systems , 1972 .

[21]  Shankar P. Bhattacharyya,et al.  Controllability, observability and the solution of AX - XB = C , 1981 .

[22]  W. Niethammer,et al.  SOR for AX−XB=C , 1991 .

[23]  N. Higham The Test Matrix Toolbox for MATLAB , 1993 .