Halorhodopsin: light-driven ion pumping made simple?

[1]  Y. Mukohata,et al.  ATP synthesis linked to light-dependent proton uptake in a rad mutant strain of Halobacterium lacking bacteriorhodopsin. , 1980, Archives of biochemistry and biophysics.

[2]  B. Schobert,et al.  Halorhodopsin is a light-driven chloride pump. , 1982, The Journal of biological chemistry.

[3]  R. Henderson,et al.  Projection structure of halorhodopsin from Halobacterium halobium at 6 A resolution obtained by electron cryo-microscopy. , 1993, Journal of molecular biology.

[4]  E. Bamberg,et al.  Light-driven proton or chloride pumping by halorhodopsin. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[5]  M. Engelhard,et al.  Blue halorhodopsin from Natronobacterium pharaonis: wavelength regulation by anions. , 1994, Biochemistry.

[6]  T. J. Walter,et al.  Anion-protein interactions during halorhodopsin pumping: halide binding at the protonated Schiff base. , 1994, Biochemistry.

[7]  D. Oesterhelt Structure and Function of Halorhodopsin , 1995 .

[8]  J. Lanyi,et al.  Light-driven chloride ion transport by halorhodopsin from Natronobacterium pharaonis. 1. The photochemical cycle. , 1995, Biochemistry.

[9]  Anion selectivity and pumping mechanism of halorhodopsin. , 1995, Biophysical chemistry.

[10]  R Henderson,et al.  Three-dimensional structure of halorhodopsin at 7 A resolution. , 1995, Journal of molecular biology.

[11]  D. Oesterhelt,et al.  Chemical reconstitution of a chloride pump inactivated by a single point mutation. , 1995, The EMBO journal.

[12]  J. Lanyi,et al.  Conversion of bacteriorhodopsin into a chloride ion pump. , 1995, Science.

[13]  J. Lanyi,et al.  Light-driven chloride ion transport by halorhodopsin from Natronobacterium pharaonis. 2. Chloride release and uptake, protein conformation change, and thermodynamics. , 1995, Biochemistry.

[14]  J. Lanyi,et al.  Interaction of proton and chloride transfer pathways in recombinant bacteriorhodopsin with chloride transport activity: implications for the chloride translocation mechanism. , 1996, Biochemistry.

[15]  J. Rosenbusch,et al.  Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[16]  F. Palmisano,et al.  Role of palmitic acid on the isolation and properties of halorhodopsin. , 1996, Biochimica et biophysica acta.

[17]  J. Lanyi,et al.  Proton transport by halorhodopsin. , 1996, Biochemistry.

[18]  D. Oesterhelt,et al.  Specific arginine and threonine residues control anion binding and transport in the light‐driven chloride pump halorhodopsin , 1997, The EMBO journal.

[19]  E. Bamberg,et al.  Chloride and proton transport in bacteriorhodopsin mutant D85T: different modes of ion translocation in a retinal protein. , 1997, Journal of molecular biology.

[20]  E. Bamberg,et al.  General concept for ion translocation by halobacterial retinal proteins: the isomerization/switch/transfer (IST) model. , 1997, Biochemistry.

[21]  M. Engelhard,et al.  Chromophore-anion interactions in halorhodopsin from Natronobacterium pharaonis probed by time-resolved resonance Raman spectroscopy. , 1997, Biochemistry.

[22]  J. Lanyi,et al.  Mechanism of Ion Transport across Membranes , 1997, The Journal of Biological Chemistry.

[23]  F. Babudri,et al.  Palmitic acid is associated with halorhodopsin as a free fatty acid. Radiolabeling of halorhodopsin with 3H-palmitic acid and chemical analysis of the reaction products of purified halorhodopsin with thiols and NaBH4. , 1998, Biochimica et biophysica acta.

[24]  W. Lehmann,et al.  Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin-lipid complex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[25]  D. Oesterhelt,et al.  The structure and mechanism of the family of retinal proteins from halophilic archaea. , 1998, Current opinion in structural biology.

[26]  Karl Edman,et al.  High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle , 1999, Nature.

[27]  J. Lanyi,et al.  Existence of two L photointermediates of halorhodopsin from Halobacterium salinarium, differing in their protein and water FTIR bands. , 1999, Biochemistry.

[28]  E. Muneyuki,et al.  Chloride concentration dependency of the electrogenic activity of halorhodopsin. , 1999, Biochemistry.

[29]  H Luecke,et al.  Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. , 1999, Science.

[30]  H. Luecke Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump. , 2000, Biochimica et biophysica acta.

[31]  G. Varo Analogies between halorhodopsin and bacteriorhodopsin. , 2000, Biochimica et biophysica acta.

[32]  R Henderson,et al.  The three-dimensional structure of halorhodopsin to 5 A by electron crystallography: A new unbending procedure for two-dimensional crystals by using a global reference structure. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Richard Henderson,et al.  Molecular mechanism of vectorial proton translocation by bacteriorhodopsin , 2000, Nature.

[34]  D. Oesterhelt,et al.  Structure of the light-driven chloride pump halorhodopsin at 1.8 A resolution. , 2000, Science.

[35]  J. Rosenbusch,et al.  Crystallization in cubo: general applicability to membrane proteins. , 2000, Acta crystallographica. Section D, Biological crystallography.

[36]  J. Lanyi,et al.  Characterization of the proton-transporting photocycle of pharaonis halorhodopsin. , 2000, Biophysical journal.

[37]  J. Lanyi,et al.  Charge motions during the photocycle of pharaonis halorhodopsin. , 2000, Biophysical journal.

[38]  V. Thorsson,et al.  Genome sequence of Halobacterium species NRC-1. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M. Hutson,et al.  Halide dependence of the halorhodopsin photocycle as measured by time-resolved infrared spectra. , 2001, Biophysical journal.

[40]  M. Engelhard,et al.  Thermodynamics of the Early Steps in the Photocycle of Natronobacterium pharaonis Halorhodopsin. Influence of Medium and of Anion Substitution†,¶ , 2001 .

[41]  M. Engelhard,et al.  Temperature and halide dependence of the photocycle of halorhodopsin from Natronobacterium pharaonis. , 2001, Biophysical journal.

[42]  Hüseyin Besir Untersuchung der lipidvermittelten Kristallisation der Ionenpumpen Bakteriorhodopsin und Halorhodopsin aus Halobacterium Salinarum , 2001 .

[43]  M. Radmacher,et al.  Direct observation of different surface structures on high-resolution images of native halorhodopsin. , 2001, Journal of molecular biology.

[44]  M. Engelhard,et al.  Static and time-resolved step-scan Fourier transform infrared investigations of the photoreaction of halorhodopsin from Natronobacterium pharaonis: consequences for models of the anion translocation mechanism. , 2001, Biophysical journal.

[45]  D. Oesterhelt,et al.  Roles of cytoplasmic arginine and threonine in chloride transport by the bacteriorhodopsin mutant D85T. , 2001, Biophysical journal.

[46]  N. Kamo,et al.  Stopped-flow analysis on anion binding to blue-form halorhodopsin from Natronobacterium pharaonis: comparison with the anion-uptake process during the photocycle. , 2002, Biochemistry.

[47]  E. Landau,et al.  Early structural rearrangements in the photocycle of an integral membrane sensory receptor. , 2002, Structure.

[48]  R. Dutzler,et al.  X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity , 2002, Nature.

[49]  J. Lanyi,et al.  Characterization of the azide-dependent bacteriorhodopsin-like photocycle of salinarum halorhodopsin. , 2002, Biophysical journal.