Reconstructing the hidden states in time course data of stochastic models.

Parameter estimation is central for analyzing models in Systems Biology. The relevance of stochastic modeling in the field is increasing. Therefore, the need for tailored parameter estimation techniques is increasing as well. Challenges for parameter estimation are partial observability, measurement noise, and the computational complexity arising from the dimension of the parameter space. This article extends the multiple shooting for stochastic systems' method, developed for inference in intrinsic stochastic systems. The treatment of extrinsic noise and the estimation of the unobserved states is improved, by taking into account the correlation between unobserved and observed species. This article demonstrates the power of the method on different scenarios of a Lotka-Volterra model, including cases in which the prey population dies out or explodes, and a Calcium oscillation system. Besides showing how the new extension improves the accuracy of the parameter estimates, this article analyzes the accuracy of the state estimates. In contrast to previous approaches, the new approach is well able to estimate states and parameters for all the scenarios. As it does not need stochastic simulations, it is of the same order of speed as conventional least squares parameter estimation methods with respect to computational time.

[1]  Michael P H Stumpf,et al.  Sensitivity, robustness, and identifiability in stochastic chemical kinetics models , 2011, Proceedings of the National Academy of Sciences.

[2]  D. Wilkinson,et al.  Bayesian Inference for Stochastic Kinetic Models Using a Diffusion Approximation , 2005, Biometrics.

[3]  C. Gillespie Moment-closure approximations for mass-action models. , 2009, IET systems biology.

[4]  Xiaohui Xie,et al.  Parameter inference for discretely observed stochastic kinetic models using stochastic gradient descent , 2010, BMC Systems Biology.

[5]  Christoph Zimmer,et al.  Parameter estimation for stochastic models of biochemical reactions , 2012 .

[6]  Patrick F. Rock,et al.  Sensitivity , 2014, Radiopaedia.org.

[7]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[8]  Suresh Kumar Poovathingal,et al.  Global parameter estimation methods for stochastic biochemical systems , 2010, BMC Bioinformatics.

[9]  Junbin Gao,et al.  Simulated maximum likelihood method for estimating kinetic rates in gene expression , 2007, Bioinform..

[10]  Colin S. Gillespie,et al.  Bayesian inference for generalized stochastic population growth models with application to aphids , 2010 .

[11]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[12]  T. Kurtz The Relationship between Stochastic and Deterministic Models for Chemical Reactions , 1972 .

[13]  Philipp Thomas,et al.  Computation of biochemical pathway fluctuations beyond the linear noise approximation using iNA , 2012, 2012 IEEE International Conference on Bioinformatics and Biomedicine.

[14]  Verena Wolf,et al.  Parameter estimation for stochastic hybrid models of biochemical reaction networks , 2012, HSCC '12.

[15]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[16]  Satoru Miyano,et al.  Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. , 2004 .

[17]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[18]  Hod Lipson,et al.  Inverse Gillespie for inferring stochastic reaction mechanisms from intermittent samples , 2013, Proceedings of the National Academy of Sciences.

[19]  Mudita Singhal,et al.  COPASI - a COmplex PAthway SImulator , 2006, Bioinform..

[20]  Fabian J Theis,et al.  Method of conditional moments (MCM) for the Chemical Master Equation , 2013, Journal of Mathematical Biology.

[21]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[22]  Jürgen Pahle,et al.  Biochemical simulations: stochastic, approximate stochastic and hybrid approaches , 2008, Briefings Bioinform..

[23]  Darren J. Wilkinson,et al.  Bayesian inference for a discretely observed stochastic kinetic model , 2008, Stat. Comput..

[24]  M. Stephens Bayesian analysis of mixture models with an unknown number of components- an alternative to reversible jump methods , 2000 .

[25]  Verena Wolf,et al.  Approximate maximum likelihood estimation for stochastic chemical kinetics , 2012, EURASIP J. Bioinform. Syst. Biol..

[26]  Satoru Miyano,et al.  Dynamic Bayesian Network and Nonparametric Regression for Nonlinear Modeling of Gene Networks from Time Series Gene Expression Data , 2003, CMSB.

[27]  Edward J. Sondik,et al.  The Optimal Control of Partially Observable Markov Processes over a Finite Horizon , 1973, Oper. Res..

[28]  D. Wilkinson Stochastic modelling for quantitative description of heterogeneous biological systems , 2009, Nature Reviews Genetics.

[29]  Christopher A. Penfold,et al.  Nonparametric Bayesian inference for perturbed and orthologous gene regulatory networks , 2012, Bioinform..

[30]  Sven Sahle,et al.  Deterministic inference for stochastic systems using multiple shooting and a linear noise approximation for the transition probabilities , 2015, IET systems biology.

[31]  Ramon Grima,et al.  A study of the accuracy of moment-closure approximations for stochastic chemical kinetics. , 2012, The Journal of chemical physics.

[32]  Peter Lipp,et al.  Calcium - a life and death signal , 1998, Nature.

[33]  J Timmer,et al.  Parameter estimation in stochastic biochemical reactions. , 2006, Systems biology.

[34]  Ursula Kummer,et al.  Transition from stochastic to deterministic behavior in calcium oscillations. , 2005, Biophysical journal.