Transcriptome-wide Discovery of microRNA Binding Sites in Human Brain

[1]  D. Tollervey,et al.  Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding , 2013, Cell.

[2]  J. Schug,et al.  Dynamic recruitment of microRNAs to their mRNA targets in the regenerating liver , 2013, BMC Genomics.

[3]  M. Zavolan,et al.  Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation , 2013, Genome research.

[4]  P. Khaitovich,et al.  Human brain evolution: transcripts, metabolites and their regulators , 2013, Nature Reviews Neuroscience.

[5]  H. Iwama,et al.  Coordinated networks of microRNAs and transcription factors with evolutionary perspectives. , 2013, Advances in experimental medicine and biology.

[6]  L. Tsai,et al.  Validation of schizophrenia-associated genes CSMD1, C10orf26, CACNA1C and TCF4 as miR-137 targets , 2013, Molecular Psychiatry.

[7]  Andrew D. Smith,et al.  Site identification in high-throughput RNA-protein interaction data , 2012, Bioinform..

[8]  S. Lawrie,et al.  Impact of a microRNA MIR137 Susceptibility Variant on Brain Function in People at High Genetic Risk of Schizophrenia or Bipolar Disorder , 2012, Neuropsychopharmacology.

[9]  Eurie L. Hong,et al.  Annotation of functional variation in personal genomes using RegulomeDB , 2012, Genome research.

[10]  Yajie Yang,et al.  Ago HITS-CLIP Expands Understanding of Kaposi's Sarcoma-associated Herpesvirus miRNA Function in Primary Effusion Lymphomas , 2012, PLoS pathogens.

[11]  Eugene Berezikov,et al.  microRNAs associated with the different human Argonaute proteins , 2012, Nucleic acids research.

[12]  J. Harley,et al.  The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-α , 2012, Nature Medicine.

[13]  R. Sachidanandam,et al.  High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries , 2012, Nature Methods.

[14]  Erin M. Schuman,et al.  The Local Transcriptome in the Synaptic Neuropil Revealed by Deep Sequencing and High-Resolution Imaging , 2012, Neuron.

[15]  P. Kenny,et al.  MicroRNAs in neuronal function and dysfunction , 2012, Trends in Neurosciences.

[16]  R. Green,et al.  miRNA-Mediated Gene Silencing by Translational Repression Followed by mRNA Deadenylation and Decay , 2012, Science.

[17]  A. Giraldez,et al.  Ribosome Profiling Shows That miR-430 Reduces Translation Before Causing mRNA Decay in Zebrafish , 2012, Science.

[18]  Allan R. Jones,et al.  Transcriptional Architecture of the Primate Neocortex , 2012, Neuron.

[19]  C. Ki,et al.  Identification of 11 novel mutations in 49 Korean patients with mucopolysaccharidosis type II , 2012, Clinical genetics.

[20]  S. Chi,et al.  An alternative mode of microRNA target recognition , 2012, Nature Structural &Molecular Biology.

[21]  J. van Helden,et al.  RSAT peak-motifs: motif analysis in full-size ChIP-seq datasets , 2011, Nucleic acids research.

[22]  Thomas W. Mühleisen,et al.  The role of variation at AβPP, PSEN1, PSEN2, and MAPT in late onset Alzheimer's disease. , 2012, Journal of Alzheimer's disease : JAD.

[23]  Andrew E. Bruno,et al.  miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3'UTRs of human genes , 2012, BMC Genomics.

[24]  S. Brand,et al.  The Role of Osteopontin (OPN/SPP1) Haplotypes in the Susceptibility to Crohn's Disease , 2011, PloS one.

[25]  S. Pääbo,et al.  MicroRNA Expression and Regulation in Human, Chimpanzee, and Macaque Brains , 2011, PLoS genetics.

[26]  Anders D. Børglum,et al.  Genome-wide association study identifies five new schizophrenia loci , 2011, Nature Genetics.

[27]  Clifford A. Meyer,et al.  Cistrome: an integrative platform for transcriptional regulation studies , 2011, Genome Biology.

[28]  Wei Li,et al.  MicroRNA regulation of homeostatic synaptic plasticity , 2011, Proceedings of the National Academy of Sciences.

[29]  Grace X. Y. Zheng,et al.  Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs , 2010, Nature Structural &Molecular Biology.

[30]  Chi-Ying F. Huang,et al.  miRTarBase: a database curates experimentally validated microRNA–target interactions , 2010, Nucleic Acids Res..

[31]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[32]  D. Keays,et al.  Disease-associated mutations in TUBA1A result in a spectrum of defects in the tubulin folding and heterodimer assembly pathway. , 2010, Human molecular genetics.

[33]  W. Filipowicz,et al.  The widespread regulation of microRNA biogenesis, function and decay , 2010, Nature Reviews Genetics.

[34]  A. Nekrutenko,et al.  Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences , 2010, Genome Biology.

[35]  Na Li,et al.  Comprehensive survey of human brain microRNA by deep sequencing , 2010, BMC Genomics.

[36]  Guanming Wu,et al.  A Viral microRNA Down-Regulates Multiple Cell Cycle Genes through mRNA 5′UTRs , 2010, PLoS pathogens.

[37]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[38]  M. Webster,et al.  Correlation analysis between genome-wide expression profiles and cytoarchitectural abnormalities in the prefrontal cortex of psychiatric disorders , 2010, Molecular Psychiatry.

[39]  Gene W. Yeo,et al.  Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans , 2010, Nature Structural &Molecular Biology.

[40]  Epaminondas Doxakis,et al.  Post-transcriptional Regulation of α-Synuclein Expression by mir-7 and mir-153 , 2010, The Journal of Biological Chemistry.

[41]  David Haussler,et al.  The UCSC Genome Browser database: update 2010 , 2009, Nucleic Acids Res..

[42]  N. Maiorano,et al.  Promotion of embryonic cortico-cerebral neuronogenesis by miR-124 , 2009, Neural Development.

[43]  R. Nussbaum,et al.  A single nucleotide polymorphism in the 3′UTR of the SNCA gene encoding alpha-synuclein is a new potential susceptibility locus for Parkinson disease , 2009, Neuroscience Letters.

[44]  A. Mele,et al.  Ago HITS-CLIP decodes miRNA-mRNA interaction maps , 2009, Nature.

[45]  F. Collins,et al.  Potential etiologic and functional implications of genome-wide association loci for human diseases and traits , 2009, Proceedings of the National Academy of Sciences.

[46]  M. Greenberg,et al.  A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis , 2009, Nature Cell Biology.

[47]  P. Stenson,et al.  The Human Gene Mutation Database: 2008 update , 2009, Genome Medicine.

[48]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[49]  Israel Steinfeld,et al.  BMC Bioinformatics BioMed Central , 2008 .

[50]  John P A Ioannidis,et al.  Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database , 2008, Nature Genetics.

[51]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[52]  G. Hannon,et al.  A MicroRNA Feedback Circuit in Midbrain Dopamine Neurons , 2007, Science.

[53]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[54]  Hsien-Da Huang,et al.  RegRNA: an integrated web server for identifying regulatory RNA motifs and elements , 2006, Nucleic Acids Res..

[55]  Jan Krüger,et al.  RNAhybrid: microRNA target prediction easy, fast and flexible , 2006, Nucleic Acids Res..

[56]  Tim Magnus,et al.  Neurogenesis in Tα-1 tubulin transgenic mice during development and after injury , 2006, Experimental Neurology.

[57]  C. Burge,et al.  The Widespread Impact of Mammalian MicroRNAs on mRNA Repression and Evolution , 2005, Science.

[58]  Lena Smirnova,et al.  Regulation of miRNA expression during neural cell specification , 2005, The European journal of neuroscience.

[59]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[60]  Philippe Amouyel,et al.  α-synuclein locus duplication as a cause of familial Parkinson's disease , 2004, The Lancet.

[61]  Philippe Amouyel,et al.  Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. , 2004, Lancet.

[62]  V. Ambros,et al.  Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation , 2004, Genome Biology.

[63]  S. Kikuchi,et al.  Genetic polymorphisms of osteopontin in association with multiple sclerosis in Japanese patients , 2003, Journal of Neuroimmunology.

[64]  T. Tuschl,et al.  Identification of Tissue-Specific MicroRNAs from Mouse , 2002, Current Biology.

[65]  G Cioni,et al.  Arginine:glycine amidinotransferase deficiency: the third inborn error of creatine metabolism in humans. , 2001, American journal of human genetics.

[66]  T. Tabira,et al.  FTDP‐17 mutations N279K and S305N in tau produce increased splicing of exon 10 , 1999, FEBS letters.

[67]  D. Cooper,et al.  Human Gene Mutation Database , 1996, Human Genetics.

[68]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .