Solving unconstrained 0-1 polynomial programs through quadratic convex reformulation

We propose a method called Polynomial Quadratic Convex Reformulation ( PQCR ) to solve exactly unconstrained binary polynomial problems (UBP) through quadratic convex reformulation. First, we quadratize the problem by adding new binary variables and reformulating (UBP) into a non-convex quadratic program with linear constraints (MIQP). We then consider the solution of (MIQP) with a specially-tailored quadratic convex reformulation method. In particular, this method relies, in a pre-processing step, on the resolution of a semi-definite programming problem where the link between initial and additional variables is used. We present computational results where we compare PQCR  with the solvers Baron and Scip . We evaluate PQCR  on instances of the image restoration problem and the low auto-correlation binary sequence problem from MINLPLib . For this last problem, 33 instances were unsolved in MINLPLib . We solve to optimality 10 of them, and for the 23 others we significantly improve the dual bounds. We also improve the best known solutions of many instances.

[1]  Jean B. Lasserre,et al.  Convex underestimators of polynomials , 2011, IEEE Conference on Decision and Control and European Control Conference.

[2]  Alain Billionnet,et al.  Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR method , 2009, Discret. Appl. Math..

[3]  B. Borchers CSDP, A C library for semidefinite programming , 1999 .

[4]  Oleg A. Prokopyev,et al.  On characterization of maximal independent sets via quadratic optimization , 2013, J. Heuristics.

[5]  Peter L. Hammer,et al.  Some remarks on quadratic programming with 0-1 variables , 1970 .

[6]  R. McBride,et al.  An Implicit Enumeration Algorithm for Quadratic Integer Programming , 1980 .

[7]  Didier Henrion,et al.  GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi , 2003, TOMS.

[8]  Sourour Elloumi,et al.  Global solution of non-convex quadratically constrained quadratic programs , 2019, Optim. Methods Softw..

[9]  Alain Billionnet,et al.  Using a Mixed Integer Quadratic Programming Solver for the Unconstrained Quadratic 0-1 Problem , 2007, Math. Program..

[10]  J. Rhys A Selection Problem of Shared Fixed Costs and Network Flows , 1970 .

[11]  M. Rao Cluster Analysis and Mathematical Programming , 1971 .

[12]  Jakob Krarup,et al.  Computer-aided layout design , 1978 .

[13]  C. Lemaréchal,et al.  Semidefinite Relaxations and Lagrangian Duality with Application to Combinatorial Optimization , 1999 .

[14]  J. Lasserre An Introduction to Polynomial and Semi-Algebraic Optimization , 2015 .

[15]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[16]  Endre Boros,et al.  Quadratic reformulations of nonlinear binary optimization problems , 2016, Mathematical Programming.

[17]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[18]  Leo Liberti,et al.  Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..

[19]  Hanif D. Sherali,et al.  A global optimization algorithm for polynomial programming problems using a Reformulation-Linearization Technique , 1992, J. Glob. Optim..

[20]  Panos M. Pardalos,et al.  The maximum clique problem , 1994, J. Glob. Optim..

[21]  A. S. Nemirovsky,et al.  Conic formulation of a convex programming problem and duality , 1992 .

[22]  Michael W. Carter,et al.  The indefinite zero-one quadratic problem , 1984, Discret. Appl. Math..

[23]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[24]  D. J. Laughhunn Quadratic Binary Programming with Application to Capital-Budgeting Problems , 1970, Oper. Res..

[25]  Tobias Achterberg,et al.  SCIP: solving constraint integer programs , 2009, Math. Program. Comput..

[26]  A. Neumaier,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .

[27]  Giovanni Rinaldi,et al.  Efficient Reduction of Polynomial Zero-One Optimization to the Quadratic Case , 2007, SIAM J. Optim..

[28]  Yves Crama,et al.  A class of valid inequalities for multilinear 0-1 optimization problems , 2017, Discret. Optim..

[29]  J. Jeffry Howbert,et al.  The Maximum Clique Problem , 2007 .

[30]  Christodoulos A. Floudas,et al.  ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations , 2014, Journal of Global Optimization.

[31]  J. Bernasconi Low autocorrelation binary sequences : statistical mechanics and configuration space analysis , 1987 .

[32]  Alain Billionnet,et al.  Using a Conic Bundle Method to Accelerate Both Phases of a Quadratic Convex Reformulation , 2017, INFORMS J. Comput..

[33]  Alain Billionnet,et al.  Extending the QCR method to general mixed-integer programs , 2010, Mathematical Programming.

[34]  Miguel F. Anjos,et al.  A dynamic inequality generation scheme for polynomial programming , 2016, Math. Program..

[35]  Amir Ali Ahmadi,et al.  DSOS and SDSOS optimization: LP and SOCP-based alternatives to sum of squares optimization , 2014, 2014 48th Annual Conference on Information Sciences and Systems (CISS).

[36]  R. Fortet L’algebre de Boole et ses applications en recherche operationnelle , 1960 .

[37]  LETTER: A non-disordered glassy model with a tunable interaction range , 2009, 0912.0848.

[38]  Alain Billionnet,et al.  Exact quadratic convex reformulations of mixed-integer quadratically constrained problems , 2015, Mathematical Programming.

[39]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .