A mesh-independent framework for crack tracking in elastodamaging materials through the regularized extended finite element method

We propose a formulation for tracking general crack paths in elastodamaging materials without mesh adaptivity and broadening of the damage band. The idea is to treat in a unified way both the damaging process and the development of displacement discontinuities by means of the regularized finite element method. With respect to previous authors’ contributions, a novel damage evolution law and an original crack tracking framework are proposed. We face the issue of mesh objectivity through several two-dimensional tests, obtaining smooth crack paths and reliable structural results.

[1]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[2]  Günther Meschke,et al.  Crack propagation criteria in the framework of X‐FEM‐based structural analyses , 2007 .

[3]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[4]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[5]  Milan Jirásek,et al.  Embedded crack model: I. Basic formulation , 2001 .

[6]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[7]  Elena Benvenuti,et al.  Mesh-size-objective XFEM for regularized continuous-discontinuous transition , 2011 .

[8]  Ola Dahlblom,et al.  Smeared Crack Analysis Using Generalized Fictitious Crack Model , 1990 .

[9]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[10]  N. Orlando,et al.  Intermediate flexural detachment in FRP-plated concrete beams through a 3D mechanism-based regularized eXtended Finite Element Method , 2018, Composites Part B: Engineering.

[11]  Milan Jirásek,et al.  Evaluation of directional mesh bias in concrete fracture simulations using continuum damage models , 2008 .

[12]  N. Chevaugeon,et al.  A level set based model for damage growth: The thick level set approach , 2011 .

[13]  Elena Benvenuti,et al.  A regularized XFEM framework for embedded cohesive interfaces , 2008 .

[14]  Marc Kamlah,et al.  An assessment of the phase field formulation for crack growth , 2015 .

[15]  E. D. Giorgi,et al.  Existence theorem for a minimum problem with free discontinuity set , 1989 .

[16]  Christian Miehe,et al.  A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .

[17]  Miguel Cervera,et al.  A crack-tracking technique for localized damage in quasi-brittle materials , 2010 .

[18]  Stefano Mariani,et al.  An extended FE strategy for transition from continuum damage to mode I cohesive crack propagation , 2007 .

[19]  G. Borino,et al.  A thermodynamically consistent nonlocal formulation for damaging materials , 2002 .

[20]  E. Benvenuti Damage integration in the strain space , 2004 .

[21]  Antonio Tralli,et al.  Variationally consistent eXtended FE model for 3D planar and curved imperfect interfaces , 2013 .

[22]  Nicolas Moës,et al.  Extended finite element method in computational fracture mechanics: a retrospective examination , 2015, International Journal of Fracture.

[23]  Yingjie Liu,et al.  An optimization‐based phase‐field method for continuous‐discontinuous crack propagation , 2018, International Journal for Numerical Methods in Engineering.

[24]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[25]  L. J. Sluys,et al.  A new method for modelling cohesive cracks using finite elements , 2001 .

[26]  E. Benvenuti,et al.  Simulation of finite-width process zone in concrete-like materials by means of a regularized extended finite element model , 2012 .

[27]  Jörn Mosler,et al.  Embedded crack vs. smeared crack models: a comparison of elementwise discontinuous crack path approaches with emphasis on mesh bias , 2004 .

[28]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[29]  Johan Blaauwendraad,et al.  Smeared Crack Approach and Fracture Localization in Concrete , 1985 .

[30]  Haim Waisman,et al.  From diffuse damage to sharp cohesive cracks: A coupled XFEM framework for failure analysis of quasi-brittle materials , 2016 .

[31]  A. Giacomini Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures , 2003, math/0303040.

[32]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[33]  Cv Clemens Verhoosel,et al.  Gradient damage vs phase-field approaches for fracture: Similarities and differences , 2016 .

[34]  N. Orlando,et al.  A new 3D experimentally consistent XFEM to simulate delamination in FRP-reinforced concrete , 2016 .

[35]  Mgd Marc Geers,et al.  A critical comparison of nonlocal and gradient-enhanced softening continua , 2001 .

[36]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[37]  M. Focardi,et al.  Which special functions of bounded deformation have bounded variation? , 2015, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[38]  J. Dolbow,et al.  An extended/generalized phase‐field finite element method for crack growth with global‐local enrichment , 2020, International Journal for Numerical Methods in Engineering.

[39]  N. Orlando,et al.  An orthotropic multi-surface damage-plasticity FE-formulation for wood: Part II – Numerical applications , 2020 .

[40]  Milan Jirásek,et al.  Embedded crack model. Part II: combination with smeared cracks , 2001 .

[41]  J. Marigo,et al.  An overview of the modelling of fracture by gradient damage models , 2016 .

[42]  T. Fries A corrected XFEM approximation without problems in blending elements , 2008 .

[43]  Antonio Rodríguez-Ferran,et al.  A medial‐axis‐based model for propagating cracks in a regularised bulk , 2015 .

[44]  E. Benvenuti XFEM with equivalent eigenstrain for matrix–inclusion interfaces , 2014 .

[45]  R. Codina,et al.  Mixed stabilized finite element methods in nonlinear solid mechanics: Part II: Strain localization , 2010 .

[46]  L. Lorenzis Some recent results and open issues on interface modeling in civil engineering structures , 2012 .

[47]  Nicolas Moës,et al.  Damage growth modeling using the Thick Level Set (TLS) approach: Efficient discretization for quasi-static loadings , 2012 .

[48]  Matteo Focardi,et al.  Asymptotic Analysis of Ambrosio-Tortorelli Energies in Linearized Elasticity , 2014, SIAM J. Math. Anal..

[49]  Ivo Babuška,et al.  Generalized finite element methods for three-dimensional structural mechanics problems , 2000 .

[50]  Timon Rabczuk,et al.  An h-adaptive thermo-mechanical phase field model for fracture , 2018 .

[51]  Eric Lorentz,et al.  Gradient damage models: Toward full-scale computations , 2011 .

[52]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[53]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[54]  Jordi Feliu-Fabà,et al.  A continuous‐discontinuous model for crack branching , 2019, International Journal for Numerical Methods in Engineering.

[55]  Miguel Cervera,et al.  Mesh objective tensile cracking via a local continuum damage model and a crack tracking technique , 2006 .

[56]  J. Prévost,et al.  Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation , 2003 .

[57]  Tymofiy Gerasimov,et al.  A line search assisted monolithic approach for phase-field computing of brittle fracture , 2016 .

[58]  G. Ventura,et al.  Accuracy of three‐dimensional analysis of regularized singularities , 2015 .

[59]  T. Belytschko,et al.  Vector level sets for description of propagating cracks in finite elements , 2003 .

[60]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[61]  N. Orlando,et al.  An orthotropic multi-surface damage-plasticity FE-formulation for wood: Part I – Constitutive model , 2020 .

[62]  J. Rots Computational modeling of concrete fracture , 1988 .

[63]  Xue Zhang,et al.  Numerical evaluation of the phase-field model for brittle fracture with emphasis on the length scale , 2017 .

[64]  Pedro P. Camanho,et al.  An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models , 2007 .

[65]  Peter Wriggers,et al.  A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling , 2018 .

[66]  P. Grassl,et al.  A damage-plasticity interface approach to the meso-scale modelling of concrete subjected to cyclic compressive loading , 2008 .

[67]  M. Jirásek,et al.  Process zone resolution by extended finite elements , 2003 .

[68]  S. Eckardt,et al.  Modelling of cohesive crack growth in concrete structures with the extended finite element method , 2007 .

[69]  B. Loret,et al.  A unified multifield formulation in nonlocal damage , 2004 .

[70]  Zdenek P. Bazant,et al.  Instability, Ductility, and Size Effect in Strain-Softening Concrete , 1978 .

[71]  Kyoungsoo Park,et al.  Removing mesh bias in mixed‐mode cohesive fracture simulation with stress recovery and domain integral , 2019, International Journal for Numerical Methods in Engineering.

[72]  G. D. Maso,et al.  Generalised functions of bounded deformation , 2013 .

[73]  Laura De Lorenzis,et al.  A review on phase-field models of brittle fracture and a new fast hybrid formulation , 2015 .

[74]  Peter Wriggers,et al.  An adaptive global─local approach for phase-field modeling of anisotropic brittle fracture , 2020 .

[75]  Luigi Ambrosio,et al.  ON THE APPROXIMATION OF FREE DISCONTINUITY PROBLEMS , 1992 .

[76]  B. Bourdin,et al.  The Variational Approach to Fracture , 2008 .

[77]  Vinh Phu Nguyen,et al.  Length scale and mesh bias sensitivity of phase-field models for brittle and cohesive fracture , 2019, Engineering Fracture Mechanics.

[78]  Z. Bažant,et al.  Nonlocal damage theory , 1987 .

[79]  A. Rodríguez‐Ferran,et al.  A hybridizable discontinuous Galerkin phase‐field model for brittle fracture with adaptive refinement , 2019, International Journal for Numerical Methods in Engineering.

[80]  G. Giambanco,et al.  A phase-field model for strain localization analysis in softening elastoplastic materials , 2019, International Journal of Solids and Structures.

[81]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .