Structural insights into probe-dependent positive allosterism of the GLP-1 receptor

[1]  W. E. Sanabria,et al.  Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial , 2019, The Lancet.

[2]  Erik Lindahl,et al.  New tools for automated high-resolution cryo-EM structure determination in RELION-3 , 2018, eLife.

[3]  Diane M. Miller,et al.  Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. , 2018, Lancet.

[4]  V. Shanmugasundaram,et al.  Inducing protein-protein interactions with molecular glues. , 2018, Bioorganic & medicinal chemistry letters.

[5]  Christopher J. Williams,et al.  MolProbity: More and better reference data for improved all‐atom structure validation , 2018, Protein science : a publication of the Protein Society.

[6]  T. S. Kobilka,et al.  Cryo-EM structure of the activated GLP-1 receptor in complex with G protein , 2017, Nature.

[7]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[8]  Lawrence A Leiter,et al.  Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. , 2016, The New England journal of medicine.

[9]  John B Buse,et al.  Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. , 2016, The New England journal of medicine.

[10]  F. Willard,et al.  Positive Allosteric Modulation of the Glucagon-like Peptide-1 Receptor by Diverse Electrophiles* , 2016, The Journal of Biological Chemistry.

[11]  Kai Zhang,et al.  Gctf: Real-time CTF determination and correction , 2015, bioRxiv.

[12]  J. Wells,et al.  Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. , 2014, Chemistry & biology.

[13]  J. Wess,et al.  Activation and allosteric modulation of a muscarinic acetylcholine receptor , 2013, Nature.

[14]  P. Sexton,et al.  Small Molecule Allosteric Modulation of the Glucagon-Like Peptide-1 Receptor Enhances the Insulinotropic Effect of Oxyntomodulin , 2012, Molecular Pharmacology.

[15]  P. Sexton,et al.  Allosteric Modulation of Endogenous Metabolites as an Avenue for Drug Discovery , 2012, Molecular Pharmacology.

[16]  Hyeon Joo,et al.  OPM database and PPM web server: resources for positioning of proteins in membranes , 2011, Nucleic Acids Res..

[17]  Francis S. Willard,et al.  Novel Small Molecule Glucagon-Like Peptide-1 Receptor Agonist Stimulates Insulin Secretion in Rodents and From Human Islets , 2010, Diabetes.

[18]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[19]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[20]  Paramjit S Arora,et al.  Assessment of helical interfaces in protein-protein interactions. , 2009, Molecular bioSystems.

[21]  A. Barabasi,et al.  An empirical framework for binary interactome mapping , 2008, Nature Methods.

[22]  Christopher L. McClendon,et al.  Reaching for high-hanging fruit in drug discovery at protein–protein interfaces , 2007, Nature.

[23]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[24]  J. Christensen,et al.  A novel small molecule met inhibitor induces apoptosis in cells transformed by the oncogenic TPR-MET tyrosine kinase. , 2003, Cancer research.

[25]  T. Kenakin,et al.  G Protein-Coupled Receptor Allosterism and Complexing , 2002, Pharmacological Reviews.

[26]  L. B. Knudsen,et al.  Glucagon-like peptide-1-(9-36) amide is a major metabolite of glucagon-like peptide-1-(7-36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor. , 1996, European journal of pharmacology.

[27]  K. Eckart,et al.  Structure/activity characterization of glucagon-like peptide-1. , 1994, European journal of biochemistry.

[28]  B. Gallwitz,et al.  Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. , 1993, European journal of biochemistry.

[29]  S. Schreiber Immunophilin-sensitive protein phosphatase action in cell signaling pathways , 1992, Cell.

[30]  Stuart L. Schreiber,et al.  Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes , 1991, Cell.

[31]  Y. Cheng,et al.  Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. , 1973, Biochemical pharmacology.

[32]  S H W Scheres,et al.  Processing of Structurally Heterogeneous Cryo-EM Data in RELION. , 2016, Methods in enzymology.

[33]  Arthur Christopoulos,et al.  Allosteric modulation of G protein-coupled receptors. , 2007, Annual review of pharmacology and toxicology.