Perovskite Nanomaterials – Synthesis, Characterization, and Applications

Inorganic perovskite-type oxides are fascinating nanomaterials for wide applications in catalysis, fuel cells, and electrochemical sensing. Perovskites prepared in the nanoscale have recently received extensive attention due to their catalytic nature when used as electrode modifiers. The catalytic activity of these oxides is higher than that of many transition metals compounds and even some precious metal oxides. They exhibit attractive physical and chemical characteristics such as electronic conductivity, electrically active structure, the oxide ions mobility through the crystal lattice, variations on the content of the oxygen, thermal and chemical stability, and super‐ magnetic, photocatalytic, thermoelectric, and dielectric properties. Nanoperovskites have been utilized as catalysts in oxygen reduction and hydrogen evolution reactions exhibiting high electrocatalytic activity, lower activation energy, and high electron transfer kinetics. In addition, some perovskites are promising candidates for the development of effective anodic catalysts for direct fuel cells showing high catalytic performance. Moreover, they are recently utilized in electro‐ chemical sensing of alcohols, gases, glucose, H2O2, and neurotransmitters. They can enhance the catalytic performance in terms of selectivity, sensitivity, unique long-term stability, excellent reproducibility, and anti-interference ability. In addition, organo‐ metallic halide perovskites exhibited efficient intrinsic properties for photovoltaic solar cells exhibiting good stability and high efficiency. This chapter introduces a comprehensive coverage of the progress in perovskites research and their applications. Emphasis is given toward several intrinsic properties of perovskites, namely, electronic conductivity, electrically active structure, and electrochemical performance in terms of synthesis routes and stability. The different synthesis methods of the perovskites (coprecipitation, sol-gel, microwave, citrate/ nitrate, etc.) will be summarized in this chapter. The synthesis method affected © 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. structural, surface, and catalytic properties of the prepared perovskites to a great extent. Also, this chapter will update the reader with the various applications of nanoperovskites particularly in fuel cells, catalysis, electrochemical sensing, and solar cells.

[1]  이원영,et al.  Sm 0.5 Sr 0.5 Co 나노섬유 조절을 통한 효율적인 연료전지 구현 , 2016 .

[2]  Renqiang Yang,et al.  Efficient planar perovskite solar cells with large fill factor and excellent stability , 2015 .

[3]  P. Yadav,et al.  Investigating the charge carrier transport within the hole-transport material free perovskite solar cell processed in ambient air , 2015 .

[4]  Chunhui Huang,et al.  High-performance hybrid perovskite solar cells with open circuit voltage dependence on hole-transporting materials , 2015 .

[5]  Ekram H. El-Ads,et al.  Electrochemistry of glucose at gold nanoparticles modified graphite/SrPdO3 electrode – Towards a novel non-enzymatic glucose sensor , 2015 .

[6]  Wen-Hau Zhang,et al.  An up-scalable approach to CH3NH3PbI3 compact films for high-performance perovskite solar cells , 2015 .

[7]  Yang Yang,et al.  Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications , 2015 .

[8]  Jingzhou Yin,et al.  A novel nonenzymatic ECL glucose sensor based on perovskite LaTiO3-Ag0.1 nanomaterials , 2015 .

[9]  G. Meng,et al.  Layered perovskite oxide Y0.8Ca0.2BaCoFeO5+δ as a novel cathode material for intermediate-temperature solid oxide fuel cells , 2015 .

[10]  Chang-Lyoul Lee,et al.  Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer , 2015 .

[11]  Nam-Gyu Park,et al.  Perovskite solar cells: an emerging photovoltaic technology , 2015 .

[12]  Xingfu Zhou,et al.  Shell-in-Shell TiO2 hollow microspheres and optimized application in light-trapping perovskite solar cells , 2015 .

[13]  Joop Schoonman,et al.  Organic–inorganic lead halide perovskite solar cell materials: A possible stability problem , 2015 .

[14]  M. Graça,et al.  Structural, electrical and ethanol sensing properties of double-doping LaFeO3 perovskite oxides , 2014 .

[15]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[16]  Venkatachalam Ganesh,et al.  Detection of the neurotransmitter dopamine by a glassy carbon electrode modified with self-assembled perovskite LaFeO3 microspheres made up of nanospheres , 2014 .

[17]  A. Galal,et al.  Nano-perovskite carbon paste composite electrode for the simultaneous determination of dopamine, ascorbic acid and uric acid , 2014 .

[18]  A. Galal,et al.  The Effect of the Lanthanide Ion-Type in LnFeO3 on the Catalytic Activity for the Hydrogen Evolution in Acidic Medium , 2014, International Journal of Electrochemical Science.

[19]  H. Zhong,et al.  Perovskite LaTiO₃-Ag0.2 nanomaterials for nonenzymatic glucose sensor with high performance. , 2013, Biosensors & bioelectronics.

[20]  C. Jin,et al.  Electrochemical study of Ba0.5Sr0.5Co0.8Fe0.2O3 perovskite as bifunctional catalyst in alkaline media , 2013 .

[21]  H. Pahlavanzadeh,et al.  Effects of Fe substitutions by Ni in La–Ni–O perovskite-type oxides in reforming of methane with CO2 and O2 , 2013 .

[22]  Yaping Ding,et al.  Determination of hydrogen peroxide and glucose using a novel sensor platform based on Co0.4Fe0.6LaO3 nanoparticles , 2013, Microchimica Acta.

[23]  Y. Chu,et al.  A novel route to prepare LaNiO3 perovskite-type oxide nanofibers by electrospinning for glucose and hydrogen peroxide sensing. , 2013, The Analyst.

[24]  D. Mangalaraj,et al.  Novel Synthesis of LaFeO3 Nanostructure Dendrites: A Systematic Investigation of Growth Mechanism, Properties, and Biosensing for Highly Selective Determination of Neurotransmitter Compounds , 2013 .

[25]  F. Liu,et al.  NdFeO3 as anode material for S/O2 solid oxide fuel cells , 2012 .

[26]  Zongping Shao,et al.  Sm0.5Sr0.5CoO3-[delta]-infiltrated cathodes for solid oxide fuel cells with improved oxygen reduction activity and stability , 2012 .

[27]  Yaping Ding,et al.  A novel nonenzymatic sensor based on LaNi0.6Co0.4O3 modified electrode for hydrogen peroxide and glucose. , 2012, Analytica chimica acta.

[28]  Ki-Tae Lee,et al.  Characterization of Ba0.5Sr0.5M1−xFexO3−δ (M = Co and Cu) perovskite oxide cathode materials for intermediate temperature solid oxide fuel cells , 2012 .

[29]  N. Gaur,et al.  Effect of A-site doping on thermal properties of LaGaO3 , 2012 .

[30]  A. Caneschi,et al.  Crystal structures and magnetic properties of strontium and copper doped lanthanum ferrites , 2012 .

[31]  Hubert A. Gasteiger,et al.  A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. , 2012 .

[32]  W. Shi,et al.  Effects of doping site and pre-sintering time on microstructure and magnetic properties of Fe-doped BaTiO3 ceramics , 2012 .

[33]  Z. Zachariev Polycrystalline Materials - Theoretical and Practical Aspects , 2012 .

[34]  F. Iacomi,et al.  Synthesis of nanocrystalline La–Pb–Fe–O perovskite and methanol-sensing characteristics , 2012 .

[35]  A. Galal,et al.  The Catalytic Activity of Ruthenates ARuO3 (A= Ca, Sr or Ba) for the Hydrogen Evolution Reaction in Acidic Medium , 2012, International Journal of Electrochemical Science.

[36]  A. Galal,et al.  Optimization of the synthesis conditions for LaNiO3 catalyst by microwave assisted citrate method for hydrogen production , 2011 .

[37]  Jens K. Nørskov,et al.  Optimizing Perovskites for the Water-Splitting Reaction , 2011, Science.

[38]  Yu Lin,et al.  The effect of Pd content in LaMnO3 for methanol partial oxidation , 2011 .

[39]  Pham Quang Ngan,et al.  Hydrocarbon gas sensing of nano-crystalline perovskite oxides LnFeO3 (Ln = La, Nd and Sm) , 2011 .

[40]  Hailei Zhao,et al.  Lattice characteristics, structure stability and oxygen permeability of BaFe1−xYxO3−δ ceramic membranes , 2011 .

[41]  M. Lallart Ferroelectrics - Material Aspects , 2011 .

[42]  H. Alamdari,et al.  Electrical and CO gas sensing properties of nanostructured La1−xCexCoO3 perovskite prepared by activated reactive synthesis , 2011 .

[43]  S. Narayanan,et al.  Properties of Calcium-Doped Lanthanum Cobalt Oxide Perovskite Electrocatalysts for Oxygen Evolution in Alkaline Medium , 2011 .

[44]  Weiyou Chen,et al.  Ethanol sensing properties of LaCoxFe1−xO3 nanoparticles: Effects of calcination temperature, Co-doping, and carbon nanotube-treatment , 2011 .

[45]  A. Galal,et al.  Investigation of the catalytic activity of LaBO3 (B = Ni, Co, Fe or Mn) prepared by the microwave-assisted method for hydrogen evolution in acidic medium , 2011 .

[46]  V. Antonucci,et al.  Glycerol oxidation in solid oxide fuel cells based on a Ni-perovskite electrocatalyst , 2011 .

[47]  M. M. Souza,et al.  Combustion synthesis of La0.7Sr0.3Co0.5Fe0.5O3 (LSCF) porous materials for application as cathode in IT-SOFC , 2011 .

[48]  Zhaoqiang Li,et al.  Fe-substituted nanometric La0.9K0.1Co1−xFexO3−δ perovskite catalysts used for soot combustion, NOx storage and simultaneous catalytic removal of soot and NOx , 2010 .

[49]  N. Yamazoe,et al.  Oxygen-permeable membranes based on partially B-site substituted BaFe1−yMyO3−δ (M=Cu or Ni) , 2010 .

[50]  Yongjia Zhang,et al.  Electrical and CO-sensing properties of NdFe1-xCoxO3 perovskite system , 2010 .

[51]  H. Batis,et al.  La–Mn perovskite-type oxide prepared by combustion method: Catalytic activity in ethanol oxidation , 2010 .

[52]  X. Kong,et al.  Characterization and optimization of Ln1.7Sr0.3CuO4 (Ln = La, Nd)-based cathodes for intermediate temperature solid oxide fuel cells , 2010 .

[53]  H. Alamdari,et al.  CO sensitive nanocrystalline LaCoO3 perovskite sensor prepared by high energy ball milling , 2010 .

[54]  D. Melo,et al.  Synthesis and characterization of LaNixCo1-xO3 Perovskites via complex precursor methods , 2010 .

[55]  A. Galal,et al.  Electrocatalytic evolution of hydrogen on a novel SrPdO3 perovskite electrode , 2010 .

[56]  A. Galal,et al.  Synthesis, structure and catalytic activity of nano-structured Sr–Ru–O type perovskite for hydrogen production , 2010 .

[57]  Xiaojuan Liu,et al.  Preparation of perovskite-type composite oxide LaNi0.5Ti0.5O3–NiFe2O4 and its application in glucose biosensor , 2010 .

[58]  G. Meng,et al.  Layered perovskite LaBaCuMO5+x (M = Fe, Co) cathodes for intermediate-temperature protonic ceramic membrane fuel cells , 2010 .

[59]  R. Biniwale,et al.  Pure phase LaFeO3 perovskite with improved surface area synthesized using different routes and its characterization , 2010 .

[60]  B. Saruhan,et al.  Effect of Fe/Co-ratio on the phase composition of Pd-integrated perovskites and its H2-SCR of NOx performance , 2010 .

[61]  J. Fierro,et al.  Effect of additive Ag on the physicochemical and catalytic properties of LaMn0.9Co0.1O3.5 perovskite , 2009 .

[62]  D. Fino,et al.  Pd substitution effects on perovskite catalyst activity for methane emission control , 2009 .

[63]  E. Manova,et al.  Mechanochemical synthesis and characterization of nanodimensional iron–cobalt spinel oxides , 2009 .

[64]  I. Z. Rahman,et al.  Synthesis of nanoparticles of La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) perovskite by solution combustion method for solid oxide fuel cell application , 2009 .

[65]  G. Rivas,et al.  Characterization of carbon paste electrodes modified with manganese based perovskites-type oxides from the amperometric determination of hydrogen peroxide , 2009 .

[66]  Peng Song,et al.  The effects of annealing temperature on the CO-sensing property of perovskite La0.8Pb0.2Fe0.8Cu0.2O3 nanoparticles , 2009 .

[67]  Jin-Seung Jung,et al.  Characterization and catalytic properties of surface la-rich LaFeO3 perovskite , 2009 .

[68]  R. Cloots,et al.  Rapid synthesis of submicron crystalline barium zirconate BaZrO3 by precipitation in aqueous basic solution below 100 °C , 2009 .

[69]  M. Jiang,et al.  Preparation and gas sensing characteristics of p-type semiconducting LnFe0.9Mg0.1O3 (Ln = Nd, Sm, Gd and Dy) materials , 2009 .

[70]  N. Dupont,et al.  Methane catalytic combustion over La–Ce–Mn–O- perovskite prepared using dielectric heating , 2009 .

[71]  M. Taherimehr,et al.  Rapid synthesis of perovskite-type LaFeO3 nanoparticles by microwave-assisted decomposition of bimetallic La[Fe(CN)6]·5H2O compound , 2009 .

[72]  Guangfeng Wang,et al.  Simultaneous determination of dopamine, uric acid and ascorbic acid with LaFeO3 nanoparticles modified electrode , 2009 .

[73]  G. Marcì,et al.  Citrate-nitrate auto-combustion synthesis of perovskite-type nanopowders: A systematic approach , 2009 .

[74]  R. Hammami,et al.  Effects of thermal treatment on physico-chemical and catalytic properties of lanthanum manganite LaMnO3+y , 2009 .

[75]  E. Sastre,et al.  Effect of strontium and cerium doping on the structural characteristics and catalytic activity for C3H6 combustion of perovskite LaCrO3 prepared by sol–gel , 2008 .

[76]  Youkun Tao,et al.  Synthesis and properties of La0.6Sr0.4CoO3−δ nanopowder , 2008 .

[77]  G. Rujijanagul,et al.  Microwave synthesis of barium iron niobate and dielectric properties , 2008 .

[78]  C. Vijayakumar,et al.  Synthesis, characterization, sintering and dielectric properties of nanostructured perovskite-type oxide, Ba2GdSbO6 , 2008 .

[79]  R. Singh,et al.  Effect of cation doping on low-temperature specific heat of LaMnO3 manganite , 2008 .

[80]  Masatsugu Oishi,et al.  Oxygen nonstoichiometry and defect structure analysis of B-site mixed perovskite-type oxide (La, Sr)(Cr, M)O3−δ (M=Ti, Mn and Fe) , 2008 .

[81]  C. Au,et al.  Lattice oxygen of La1−xSrxMO3 (M = Mn, Ni) and LaMnO3−αFβ perovskite oxides for the partial oxidation of methane to synthesis gas , 2008 .

[82]  E. Longo,et al.  Synthesis, structural refinement and optical behavior of CaTiO3 powders: A comparative study of processing in different furnaces , 2008 .

[83]  R. Parra,et al.  Synthesis of KNbO3 nanostructures by a microwave assisted hydrothermal method , 2008 .

[84]  J. Fierro,et al.  Preparation and characterization of nickel-based mixed-oxides and their performance for catalytic methane decomposition , 2008 .

[85]  M. Jiang,et al.  Semiconducting gas sensor for ethanol based on LaMgxFe1−xO3 nanocrystals , 2008 .

[86]  U. Stimming,et al.  Recent anode advances in solid oxide fuel cells , 2007 .

[87]  G. Meng,et al.  Synthesis and electrical properties of Ln0.6Ca0.4FeO3−δ (LnPr, Nd, Sm) as cathode materials for IT-SOFC , 2007 .

[88]  J. Fergus Perovskite oxides for semiconductor-based gas sensors , 2007 .

[89]  R. Roque-Malherbe,et al.  Absorption kinetics of hydrogen in nanocrystals of BaCe0.95Yb0.05O3-δ proton-conducting perovskite , 2007 .

[90]  H. Masumoto,et al.  Microstructure and Electrical Conductivity of BaRuO3 Thin Films Prepared by Laser Ablation , 2006 .

[91]  M. Jiang,et al.  Electrical properties and ethanol-sensing characteristics of perovskite La1-xPbxFeO3 , 2006 .

[92]  John B Goodenough,et al.  Double Perovskites as Anode Materials for Solid-Oxide Fuel Cells , 2006, Science.

[93]  N. Hur,et al.  Magnetic and transport properties of lanthanum perovskites with B-site half doping , 2006 .

[94]  Ralf Moos,et al.  Hydrocarbon sensing with thick and thin film p-type conducting perovskite materials , 2005 .

[95]  W. Jaegermann,et al.  X-ray photoelectron spectroscopy of La0.5Sr0.5MnO3 , 2005 .

[96]  M. Johnsson,et al.  Crystallography and Chemistry of Perovskites , 2005, cond-mat/0506606.

[97]  M. Islam,et al.  Effects of cation vacancy distribution in doped LaMnO3+δ perovskites , 2005, cond-mat/0504334.

[98]  Jong-Won Yoon,et al.  Microwave-assisted synthesis of CaMoO4 nano-powders by a citrate complex method and its photoluminescence property , 2005 .

[99]  Yen‐Pei Fu,et al.  Fe/Sr ratio effect on magnetic properties of strontium ferrite powders synthesized by microwave-induced combustion process , 2005 .

[100]  Zongping Shao,et al.  A high-performance cathode for the next generation of solid-oxide fuel cells , 2004, Nature.

[101]  S. Haile Fuel cell materials and components , 2003 .

[102]  John T. S. Irvine,et al.  A redox-stable efficient anode for solid-oxide fuel cells , 2003, Nature materials.

[103]  B. Delmon,et al.  Activity in methane combustion and sensitivity to sulfur poisoning of La1-xCexMn1-yCoyO3 perovskite oxides , 2003 .

[104]  K. J. Rao,et al.  Microwave preparation and sintering of industrially important perovskite oxides: LaMO3(M = Cr, Co, Ni) , 2003 .

[105]  Xinghui Wu,et al.  Preparation and gas-sensing properties of perovskite-type SrFeO3 oxide , 2001 .

[106]  M. A. Peña,et al.  Chemical structures and performance of perovskite oxides. , 2001, Chemical reviews.

[107]  Stephen J. Skinner,et al.  Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes , 2001 .

[108]  K. J. Rao,et al.  Microwave Synthesis and Consolidation of Gadolinium Aluminum Perovskite, a Ceramic Extraordinaire , 2000 .

[109]  P. Vernoux,et al.  Alternative anode material for gradual methane reforming in solid oxide fuel cells , 2000 .

[110]  A. Hammouche,et al.  Solvent effect on synthesis of perovskite-type La1−xCaxCoO3 and their electrochemical properties for oxygen reactions , 2000 .

[111]  F. Poulsen Defect chemistry modelling of oxygen-stoichiometry, vacancy concentrations, and conductivity of (La1−xSrx)yMnO3±δ , 2000 .

[112]  Piero Porta,et al.  Perovskite-type oxides. 1: Structural, magnetic, and morphological properties of LaMn[sub 1[minus]x]Cu[sub x]O[sub 3] and LaCo[sub 1[minus]x]Cu[sub x]O[sub 3] solid solutions with large surface area , 1999 .

[113]  Matteo Ferroni,et al.  Screen-printed perovskite-type thick films as gas sensors for environmental monitoring , 1999 .

[114]  M. Nygren,et al.  Structural and surface characterization of perovskite-type oxides; influence of A and B substitutions upon oxygen binding energy , 1998 .

[115]  Liquan Chen,et al.  Microwave synthesis of LiCoO2 cathode materials , 1997 .

[116]  N. Miura,et al.  Sensing characteristics of hydrogen peroxide sensor using carbon-based electrode loaded with perovskite-type oxide , 1996 .

[117]  L. Kong,et al.  Gas-sensing property and mechanism of CaxLa1−xFeO3 ceramics , 1996 .

[118]  K. Knight,et al.  Perovskite solid electrolytes: Structure, transport properties and fuel cell applications , 1995 .

[119]  J. Fierro,et al.  Properties and Applications of Perovskite-Type Oxides , 1992 .

[120]  K. R. Barnard,et al.  Lanthanum cobalt oxide oxidation catalysts derived from mixed hydroxide precursors , 1990 .

[121]  N. Yamazoe,et al.  Oxygen sorption and catalytic properties of La1−xSrxCo1−yFeyO3 Perovskite-type oxides , 1990 .

[122]  P. K. Gallagher,et al.  Influence of oxygen partial pressure on the synthesis of barium yttrium copper oxide (Ba2YCu3O7) from a novel oxalate precursor , 1989 .

[123]  T. Venkatesan,et al.  Preparation of Y‐Ba‐Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material , 1987 .

[124]  C. Guarnieri,et al.  LARGE AREA PLASMA SPRAY DEPOSITED SUPERCONDUCTINGYBa2Cu3O7THICK FILMS , 1987 .

[125]  N. Yamazoe,et al.  Preparation of perovskite-type oxides with large surface area by citrate process. , 1987 .

[126]  M. Misono,et al.  REDUCTION-OXIDATION AND CATALYTIC PROPERTIES OF PEROVSKITE-TYPE MIXED OXIDE CATALYSTS (La1-xSrxCoO3) , 1981 .

[127]  H. Iwahara,et al.  Ionic conduction in perovskite-type oxide solid solution and its application to the solid electrolyte fuel cell , 1971 .

[128]  P. K. Gallagher,et al.  Further studies of the thermal decomposition of europium hexacyanoferrate(III) and ammonium europium hexacyanoferrate(II) , 1970 .

[129]  F. Schrey,et al.  The thermal decomposition of freeze-dried tantalum and mixed lithium—niobium oxalate , 1970 .

[130]  F. Galasso Structure, Properties and Preparation of Perovskite Type Compounds , 1969 .

[131]  E. Swiggard,et al.  Preparation of barium titanyl oxalate tetrahydrate for conversion to barium titanate of high purity , 1956 .

[132]  Hongjiao Li,et al.  Sr2Fe2−xMoxO6−δ perovskite as an anode in a solid oxide fuel cell: Effect of the substitution ratio , 2016 .

[133]  S. M. Khetre,et al.  Ethanol gas sensing properties of nano-porous LaFeO 3 thick films , 2015 .

[134]  Lydia Helena Wong,et al.  TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode , 2015 .

[135]  M. Kumar,et al.  Temperature induced structural, electrical and optical changes in solution processed perovskite material: Application in photovoltaics , 2015 .

[136]  Guoqiang Tan,et al.  Structural transformation of Sm3+ doped BiVO4 with high photocatalytic activity under simulated sun-light , 2015 .

[137]  A. Galal,et al.  The Electrochemistry and Determination of Some Neurotransmitters at SrPdO3 Modified Graphite Electrode , 2013 .

[138]  A. Nagar,et al.  Synthesis and Characterization of Pure and Nickel Doped SrTiO3Nanoparticles via Solid State Reaction Route , 2013 .

[139]  A. Galal,et al.  Catalytic Activity toward Oxygen Evolution of LaFeO3 Prepared by the Microwave Assisted Citrate Method , 2012 .

[140]  Xiaojuan Liu,et al.  A novel nonenzymatic hydrogen peroxide sensor based on LaNi0.5Ti0.5O3/CoFe2O4 modified electrode. , 2012, Colloids and surfaces. B, Biointerfaces.

[141]  F. Gao,et al.  Gas-sensing properties of perovskite La0.875Ba0.125FeO3 nanocrystalline powders , 2011 .

[142]  S. Dasgupta,et al.  Synthesis, characterization and properties of nanocrystalline perovskite cathode materials , 2010 .

[143]  张茹,et al.  Electrical and CO-sensing properties of NdFe_(1–x)Co_xO_3 perovskite system , 2010 .

[144]  石原 達己,et al.  Perovskite oxide for solid oxide fuel cells , 2009 .

[145]  J. Calderon‐Moreno,et al.  Lanthanum cobaltite thin films on stainless steel , 2009 .

[146]  Shuai Li Preparation and characterization of perovskite structure lanthanum gallate and lanthanum aluminate based oxides , 2009 .

[147]  S. Koo,et al.  Microwave-assisted synthesis of PbWO4 nano-powders via a citrate complex precursor and its photoluminescence , 2006 .

[148]  Thomas Wolfram,et al.  Electronic and optical properties of D-band perovskites , 2006 .

[149]  Jong-Won Yoon,et al.  Microwave-assisted synthesis of nanocrystalline MWO4 (M: Ca, Ni) via water-based citrate complex precursor , 2005 .

[150]  Kebin Zhou,et al.  Synergistic effect of palladium and oxygen vacancies in the Pd/perovskite catalysts synthesized by the spc method. , 2005, Journal of environmental sciences.

[151]  W. Jaegermann,et al.  X-ray photoelectron spectroscopy of La 0.5 Sr 0.5 MnO 3 , 2005 .

[152]  Yao Guang-chun Microwave synthesis of LiCoO_2 cathode materials , 2005 .

[153]  K. Shimamura,et al.  Interpretation of XPS O (1s) in Mixed Oxides Proved on Mixed Perovskite Crystals , 2002 .

[154]  S. Blundell,et al.  Rapid synthesis of colossal magnetoresistance manganites by microwave dielectric heating , 2000 .