Mixed logistic regression models

This article studies binomial mixture models that include covariates in binomial parameters and mixing probabilities. This model contains logistic regression, nonparametric mixed logistic regression (Follmann and Lambert 1989) and independent binomial mixture models as special cases, and provides an alternative to quasi-likelihood and betabinomial regression for modeling extra-binomial variation. Estimation methods based on the EM and quasi-Newton algorithms, properties of these estimates, a model selection procedure, residual analysis, and goodness of fit are discussed. This methodology is motivated and illustrated with an example. A Monte Carlo study investigates behavior of the estimates and model selection criteria.

[1]  A. Raftery,et al.  Discharge Rates of Medicare Stroke Patients to Skilled Nursing Facilities: Bayesian Logistic Regression with Unobserved Heterogeneity , 1996 .

[2]  David R. Cox,et al.  Some remarks on overdispersion , 1983 .

[3]  Diane Lambert,et al.  Identifiability of finite mixtures of logistic regression models , 1991 .

[4]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[5]  Byung Soo Kim,et al.  The Ames Salmonella/Microsome Mutagenicity Assay: Issues of Inference and Validation , 1989 .

[6]  M. Puterman,et al.  Mixed Poisson regression models with covariate dependent rates. , 1996, Biometrics.

[7]  J. Busvine THE TOXICITY OF ETHYLENE OXIDE TO CALANDRA ORYZAE, C. GRANARIA, TRIBOLIUM CASTANEUM, AND CIMEX LECTULARIUS , 1938 .

[8]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[9]  Martin L. Puterman,et al.  Analysis of Patent Data—A Mixed-Poisson-Regression-Model Approach , 1998 .

[10]  B. Efron Double Exponential Families and Their Use in Generalized Linear Regression , 1986 .

[11]  John A. Nelder,et al.  Generalized linear models. 2nd ed. , 1993 .

[12]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[13]  C. Dean Testing for Overdispersion in Poisson and Binomial Regression Models , 1992 .

[14]  John D. Kalbfleisch,et al.  Penalized minimum‐distance estimates in finite mixture models , 1996 .

[15]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[16]  G. J. Goodhardt,et al.  The Beta‐Binomial Model for Consumer Purchasing Behaviour , 1970 .

[17]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[18]  D. A. Williams,et al.  Extra‐Binomial Variation in Logistic Linear Models , 1982 .

[19]  Murray Aitkin,et al.  Fitting overdispersed generalized linear models by non-parametric maximum likelihood. , 1995 .

[20]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[21]  W. Blischke Estimating the Parameters of Mixtures of Binomial Distributions , 1964 .

[22]  H. Teicher Identifiability of Mixtures , 1961 .

[23]  Martin Crowder,et al.  Beta-binomial Anova for Proportions , 1978 .

[24]  Murray Aitkin,et al.  Variance Component Models with Binary Response: Interviewer Variability , 1985 .

[25]  R. Prentice,et al.  The analysis of chromosomally aberrant cells based on beta-binomial distribution. , 1984, Radiation Research.

[26]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[27]  Dorothy A. Anderson SOME MODELS FOR OVERDISPERSED BINOMIAL DATA , 1988 .

[28]  H. Akaike A new look at the statistical model identification , 1974 .

[29]  Peiming Wang,et al.  Mixed regression models for discrete data , 1994 .

[30]  Diane Lambert,et al.  Generalizing Logistic Regression by Nonparametric Mixing , 1989 .

[31]  G. Schwarz Estimating the Dimension of a Model , 1978 .