Semi‐classical edge states for the Robin Laplacian
暂无分享,去创建一个
[1] G. Stampacchia,et al. Inverse Problem for a Curved Quantum Guide , 2012, Int. J. Math. Math. Sci..
[2] G. Grubb. On the Functional Calculus of Pseudo-Differential Boundary Problems , 1984 .
[3] L. B. D. Monvel. Boundary problems for pseudo-differential operators , 1971 .
[4] David A. Sher,et al. Nodal length of Steklov eigenfunctions on real-analytic Riemannian surfaces , 2015, Journal für die reine und angewandte Mathematik (Crelles Journal).
[5] Ayman Kachmar,et al. Counterexample to Strong Diamagnetism for the Magnetic Robin Laplacian , 2019, Mathematical Physics, Analysis and Geometry.
[6] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[7] F. Gori,et al. The ‘flea on the elephant’ effect , 2019, European Journal of Physics.
[8] G. Grubb. Distributions and Operators , 2008 .
[9] Hans F. Weinberger,et al. An Isoperimetric Inequality for the N-Dimensional Free Membrane Problem , 1956 .
[10] J. Edward,et al. An inverse spectral result for the Neumann operator on planar domains , 1993 .
[11] L. B. Monvel. Opérateurs pseudo-différentiels analytiques et problèmes aux limites elliptiques , 1969 .
[12] Sum of the negative eigenvalues for the semi-classical Robin Laplacian , 2020 .
[13] J. Galkowski,et al. Pointwise Bounds for Steklov Eigenfunctions , 2016, The Journal of Geometric Analysis.
[14] Antoine Henrot. Shape optimization and spectral theory , 2017 .
[15] Steven G. Krantz. Calculation and estimation of the Poisson kernel , 2005 .
[16] Iosif Polterovich,et al. SPECTRAL GEOMETRY OF THE STEKLOV PROBLEM , 2014, 1411.6567.
[17] Konstantin Pankrashkin,et al. Mean curvature bounds and eigenvalues of Robin Laplacians , 2014, 1407.3087.
[18] H. Levine,et al. Inequalities for Dirichlet and Neumann eingenvalues of the laplacian for domains on spheres , 1997 .
[19] G. Szegő,et al. Inequalities for Certain Eigenvalues of a Membrane of Given Area , 1954 .
[20] P. Hislop,et al. Spectral asymptotics of the Dirichlet-to-Neumann map on multiply connected domains in R d , 2001 .
[21] B. Helffer,et al. Eigenvalues for the Robin Laplacian in domains with variable curvature , 2014, 1411.2700.
[22] B. Helffer,et al. Tunneling for the Robin Laplacian in smooth planar domains , 2015, 1509.03986.
[23] Ayman Kachmar,et al. Weyl formulae for the Robin Laplacian in the semiclassical limit , 2016, 1602.06179.
[24] G. Berkolaiko,et al. Nodal deficiency, spectral flow, and the Dirichlet-to-Neumann map , 2018, Letters in Mathematical Physics.