Semi‐classical edge states for the Robin Laplacian

Motivated by the study of high energy Steklov eigenfunctions, we examine the semi-classical Robin Laplacian. In the two dimensional situation, we determine an effective operator describing the asymptotic distribution of the negative eigenvalues, and we prove that the corresponding eigenfunctions decay away from the boundary, for all dimensions.

[1]  G. Stampacchia,et al.  Inverse Problem for a Curved Quantum Guide , 2012, Int. J. Math. Math. Sci..

[2]  G. Grubb On the Functional Calculus of Pseudo-Differential Boundary Problems , 1984 .

[3]  L. B. D. Monvel Boundary problems for pseudo-differential operators , 1971 .

[4]  David A. Sher,et al.  Nodal length of Steklov eigenfunctions on real-analytic Riemannian surfaces , 2015, Journal für die reine und angewandte Mathematik (Crelles Journal).

[5]  Ayman Kachmar,et al.  Counterexample to Strong Diamagnetism for the Magnetic Robin Laplacian , 2019, Mathematical Physics, Analysis and Geometry.

[6]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[7]  F. Gori,et al.  The ‘flea on the elephant’ effect , 2019, European Journal of Physics.

[8]  G. Grubb Distributions and Operators , 2008 .

[9]  Hans F. Weinberger,et al.  An Isoperimetric Inequality for the N-Dimensional Free Membrane Problem , 1956 .

[10]  J. Edward,et al.  An inverse spectral result for the Neumann operator on planar domains , 1993 .

[11]  L. B. Monvel Opérateurs pseudo-différentiels analytiques et problèmes aux limites elliptiques , 1969 .

[12]  Sum of the negative eigenvalues for the semi-classical Robin Laplacian , 2020 .

[13]  J. Galkowski,et al.  Pointwise Bounds for Steklov Eigenfunctions , 2016, The Journal of Geometric Analysis.

[14]  Antoine Henrot Shape optimization and spectral theory , 2017 .

[15]  Steven G. Krantz Calculation and estimation of the Poisson kernel , 2005 .

[16]  Iosif Polterovich,et al.  SPECTRAL GEOMETRY OF THE STEKLOV PROBLEM , 2014, 1411.6567.

[17]  Konstantin Pankrashkin,et al.  Mean curvature bounds and eigenvalues of Robin Laplacians , 2014, 1407.3087.

[18]  H. Levine,et al.  Inequalities for Dirichlet and Neumann eingenvalues of the laplacian for domains on spheres , 1997 .

[19]  G. Szegő,et al.  Inequalities for Certain Eigenvalues of a Membrane of Given Area , 1954 .

[20]  P. Hislop,et al.  Spectral asymptotics of the Dirichlet-to-Neumann map on multiply connected domains in R d , 2001 .

[21]  B. Helffer,et al.  Eigenvalues for the Robin Laplacian in domains with variable curvature , 2014, 1411.2700.

[22]  B. Helffer,et al.  Tunneling for the Robin Laplacian in smooth planar domains , 2015, 1509.03986.

[23]  Ayman Kachmar,et al.  Weyl formulae for the Robin Laplacian in the semiclassical limit , 2016, 1602.06179.

[24]  G. Berkolaiko,et al.  Nodal deficiency, spectral flow, and the Dirichlet-to-Neumann map , 2018, Letters in Mathematical Physics.