Violation of Bell Inequalities as a Violation of Fair Sampling in Threshold Detectors

Photomultiplier tubes and avalanche photodiodes, which are commonly used in quantum optic experiments, are sometimes referred to as threshold detectors because, in photon counting mode, they cannot discriminate the number of photoelectrons initially extracted from the absorber in the detector. We argue that they can be called threshold detectors on more account than that. We point out that their their functioning principle relies on two thresholds that are usually thought unimportant individually in the context of EPR‐Bell discussion. We show how the combined effect of these threshold can lead to a significant sampling selection bias in the detection of pairs of pulses, resulting in an apparent violation of Bell inequalities.

[1]  Guillaume Adenier,et al.  Local Realist Approach and Numerical Simulations of Nonclassical Experiments in Quantum Mechanics , 2008 .

[2]  M. Pshirkov,et al.  Weak microlensing effect and stability of pulsar time scale , 2006, astro-ph/0610681.

[3]  S.D. Personick Receiver design for optical fiber systems , 1977, Proceedings of the IEEE.

[4]  L. Accardi Topics in quantum probability , 1981 .

[5]  Tobias J. Hagge,et al.  Physics , 1929, Nature.

[6]  Garg,et al.  Detector inefficiencies in the Einstein-Podolsky-Rosen experiment. , 1987, Physical review. D, Particles and fields.

[7]  D. Klyshko Observable signs of nonclassical light , 1996 .

[8]  P. Lugol Annalen der Physik , 1906 .

[9]  Rupert Ursin,et al.  Violation of local realism with freedom of choice , 2008, Proceedings of the National Academy of Sciences.

[10]  Andrei Khrennikov,et al.  Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models , 2011 .

[11]  W. Heitler The Principles of Quantum Mechanics , 1947, Nature.

[12]  J. N. Hollenhorst Fundamental limits on optical pulse detection and digital communication , 1995 .

[13]  R. J. McIntyre,et al.  Comparison of photomultipliers and avalanche photodiodes for laser applications , 1970 .

[14]  The "Chaotic Ball" model,local realism and the Bell test loopholes , 2002, quant-ph/0210150.

[15]  Philippe Grangier,et al.  Experimental Realization of Wheeler's Delayed-Choice Gedanken Experiment , 2006, Science.

[16]  Armin W. Schulz,et al.  Interpretations of probability , 2003 .

[17]  H.W. Kraner,et al.  Radiation detection and measurement , 1981, Proceedings of the IEEE.

[18]  Ulrich Güntzer,et al.  Non-Archimedean Analysis , 1984 .

[19]  Philippe Grangier Etude expérimentale de propriétés non-classique de la lumière; interférences à un seul photon , 1986 .

[20]  S. Berman,et al.  Nuovo Cimento , 1983 .

[21]  Swee-Ping Chia,et al.  AIP Conference Proceedings , 2008 .

[22]  H. J. Bernstein,et al.  Quantum Physics from A to Z , 2005, quant-ph/0505187.

[23]  Nicolas Gisin,et al.  Possible entanglement detection with the naked eye , 2008 .

[24]  C. Monroe,et al.  Experimental violation of a Bell's inequality with efficient detection , 2001, Nature.

[25]  Andrei Khrennikov,et al.  Interpretations of Probability , 1999 .

[26]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[27]  Jan-Åke Larsson,et al.  Quantum Paradoxes, Probability Theory, and Change of Ensemble , 2000 .

[28]  G. Adenier Quantum entanglement, fair sampling, and reality: Is the moon there when nobody looks? , 2007, 0705.1477.

[29]  D. Klyshko Two-photon (squeezed) light: Classical and quantum effects , 1990 .

[30]  F. Selleri Wave-Particle Duality , 2012 .

[31]  Andrei Khrennikov,et al.  The Principle of Supplementarity: A Contextual Probabilistic Viewpoint to Complementarity, the Interference of Probabilities and Incompatibility of Variables in Quantum Mechanics , 2005 .