Optimal accessing and non-accessing structures for graph protocols

An accessing set in a graph is a subset B of vertices such that there exists D subset of B, such that each vertex of V\B has an even number of neighbors in D. In this paper, we introduce new bounds on the minimal size kappa'(G) of an accessing set, and on the maximal size kappa(G) of a non-accessing set of a graph G. We show strong connections with perfect codes and give explicitly kappa(G) and kappa'(G) for several families of graphs. Finally, we show that the corresponding decision problems are NP-Complete.

[1]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[2]  Elham Kashefi,et al.  Universal Blind Quantum Computation , 2008, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[3]  Hans-J. Briegel,et al.  Computational model underlying the one-way quantum computer , 2002, Quantum Inf. Comput..

[4]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[5]  S. Klavžar,et al.  1-perfect codes in Sierpiński graphs , 2002, Bulletin of the Australian Mathematical Society.

[6]  Catherine A. Meadows,et al.  Security of Ramp Schemes , 1985, CRYPTO.

[7]  D. Markham,et al.  Graph states for quantum secret sharing , 2008, 0808.1532.

[8]  Mehdi Mhalla,et al.  Resources Required for Preparing Graph States , 2006, ISAAC.

[9]  G. Vidal,et al.  Classical simulation versus universality in measurement-based quantum computation , 2006, quant-ph/0608060.

[10]  Mehdi Mhalla,et al.  Classical versus Quantum Graph-based Secret Sharing , 2011, 1109.4731.

[11]  Mehdi Mhalla,et al.  Finding Optimal Flows Efficiently , 2007, ICALP.

[12]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[13]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[14]  Mehdi Mhalla,et al.  New Protocols and Lower Bounds for Quantum Secret Sharing with Graph States , 2011, TQC.