Design and fabrication of flexible rod meshes

We present a computational tool for fabrication-oriented design of flexible rod meshes. Given a deformable surface and a set of deformed poses as input, our method automatically computes a printable rod mesh that, once manufactured, closely matches the input poses under the same boundary conditions. The core of our method is formed by an optimization scheme that adjusts the cross-sectional profiles of the rods and their rest centerline in order to best approximate the target deformations. This approach allows us to locally control the bending and stretching resistance of the surface with a single material, yielding high design flexibility and low fabrication cost.

[1]  Wayne E. Carlson,et al.  Simulating the structure and dynamics of human hair: Modelling, rendering and animation , 1991, Comput. Animat. Virtual Worlds.

[2]  Christopher D. Twigg,et al.  Optimization for sag-free simulations , 2011, SCA '11.

[3]  Jan Kautz,et al.  3D-printing of non-assembly, articulated models , 2012, ACM Trans. Graph..

[4]  Doug L. James,et al.  Fabricating articulated characters from skinned meshes , 2012, ACM Trans. Graph..

[5]  Wilmot Li,et al.  Designing and fabricating mechanical automata from mocap sequences , 2013, ACM Trans. Graph..

[6]  Jean-Marc Chassery,et al.  Approximated Centroidal Voronoi Diagrams for Uniform Polygonal Mesh Coarsening , 2004, Comput. Graph. Forum.

[7]  Steve Marschner,et al.  Physical Face Cloning , 2022 .

[8]  Markus H. Gross,et al.  Computational design of actuated deformable characters , 2013, ACM Trans. Graph..

[9]  Steve Marschner,et al.  Data‐Driven Estimation of Cloth Simulation Models , 2012, Comput. Graph. Forum.

[10]  Sunil Hadap,et al.  Oriented Strands-dynamics of stiff multi-body system , 2006 .

[11]  Markus H. Gross,et al.  Meshless deformations based on shape matching , 2005, ACM Trans. Graph..

[12]  Yong Chen,et al.  Interactive Material Design Using Model Reduction , 2015, TOGS.

[13]  J. Spillmann,et al.  CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects , 2007, SCA '07.

[14]  M. Otaduy,et al.  Capture and modeling of non-linear heterogeneous soft tissue , 2009, ACM Trans. Graph..

[15]  Markus H. Gross,et al.  Efficient simulation of example-based materials , 2012, SCA '12.

[16]  Joëlle Thollot,et al.  Inverse dynamic hair modeling with frictional contact , 2013, ACM Trans. Graph..

[17]  Hujun Bao,et al.  Space-time editing of elastic motion through material optimization and reduction , 2014, ACM Trans. Graph..

[18]  E. Vouga,et al.  Discrete viscous threads , 2010, ACM Trans. Graph..

[19]  Matthias Teschner,et al.  Ieee Transactions on Visualization and Computer Graphics 1 Cosserat Nets , 2022 .

[20]  Wojciech Matusik,et al.  Spec2Fab , 2013, ACM Trans. Graph..

[21]  Ken-ichi Anjyo,et al.  Directable animation of elastic objects , 2005, SCA '05.

[22]  Romain Casati,et al.  Super space clothoids , 2013, ACM Trans. Graph..

[23]  Kun Zhou,et al.  An asymptotic numerical method for inverse elastic shape design , 2014, ACM Trans. Graph..

[24]  E. Grinspun,et al.  Discrete elastic rods , 2008, SIGGRAPH 2008.

[25]  Markus H. Gross,et al.  Deformable objects alive! , 2012, ACM Trans. Graph..

[26]  Mark Meyer,et al.  Artistic simulation of curly hair , 2013, SCA '13.

[27]  Jernej Barbic,et al.  Real-time large-deformation substructuring , 2011, ACM Trans. Graph..

[28]  Wojciech Matusik,et al.  Design and fabrication of materials with desired deformation behavior , 2010, ACM Trans. Graph..

[29]  Joëlle Thollot,et al.  Stable inverse dynamic curves , 2010, ACM Trans. Graph..

[30]  Andrew Selle,et al.  To appear in the ACM SIGGRAPH conference proceedings A Mass Spring Model for Hair Simulation , 2008 .

[31]  Eitan Grinspun,et al.  Computational design of linkage-based characters , 2014, ACM Trans. Graph..

[32]  Marie-Paule Cani,et al.  Super-helices for predicting the dynamics of natural hair , 2006, SIGGRAPH 2006.

[33]  Ligang Liu,et al.  Cost-effective printing of 3D objects with skin-frame structures , 2013, ACM Trans. Graph..

[34]  Eitan Grinspun,et al.  Example-based elastic materials , 2011, ACM Trans. Graph..

[35]  Olga Sorkine-Hornung,et al.  Spin-it , 2017, Commun. ACM.

[36]  Nadia Magnenat-Thalmann,et al.  Stop-and-go cloth draping , 2007, The Visual Computer.

[37]  Wojciech Matusik,et al.  Computational design of mechanical characters , 2013, ACM Trans. Graph..

[38]  Bailin Deng,et al.  Wire mesh design , 2014, ACM Trans. Graph..

[39]  Sylvain Lefebvre,et al.  Make it stand , 2013, ACM Trans. Graph..

[40]  Takeo Igarashi,et al.  Sensitive couture for interactive garment modeling and editing , 2011, ACM Trans. Graph..

[41]  Markus H. Gross,et al.  Computational Design of Rubber Balloons , 2012, Comput. Graph. Forum.

[42]  Wojciech Matusik,et al.  OpenFab , 2013, ACM Trans. Graph..

[43]  Peng Song,et al.  Reciprocal frame structures made easy , 2013, ACM Trans. Graph..

[44]  Dinesh K. Pai,et al.  STRANDS: Interactive Simulation of Thin Solids using Cosserat Models , 2002, Comput. Graph. Forum.