A comprehensive evaluation of module detection methods for gene expression data

[1]  Yvan Saeys,et al.  A comprehensive evaluation of module detection methods for gene expression data , 2018, Nature Communications.

[2]  Daniel Marbach,et al.  Tissue-specific regulatory circuits reveal variable modular perturbations across complex diseases , 2016, Nature Methods.

[3]  I. Amit,et al.  Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors , 2016, Cell.

[4]  I. Amit,et al.  Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors , 2015, Cell.

[5]  Minoru Kanehisa,et al.  KEGG as a reference resource for gene and protein annotation , 2015, Nucleic Acids Res..

[6]  Jan Baumbach,et al.  Comparing the performance of biomedical clustering methods , 2015, Nature Methods.

[7]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[8]  Bie M. P. Verbist,et al.  Using transcriptomics to guide lead optimization in drug discovery projects: Lessons learned from the QSTAR project. , 2015, Drug discovery today.

[9]  Frank Van Breusegem,et al.  Arabidopsis Ensemble Reverse-Engineered Gene Regulatory Network Discloses Interconnected Transcription Factors in Oxidative Stress[W] , 2014, Plant Cell.

[10]  Juancarlos Chan,et al.  Gene Ontology Consortium: going forward , 2014, Nucleic Acids Res..

[11]  Helen Shen,et al.  Interactive notebooks: Sharing the code , 2014, Nature.

[12]  N Baldwin,et al.  A narrow repertoire of transcriptional modules responsive to pyogenic bacteria is impaired in patients carrying loss-of-function mutations in MYD88 or IRAK4 , 2014, Nature Immunology.

[13]  P. Kemmeren,et al.  De-Novo Learning of Genome-Scale Regulatory Networks in S. cerevisiae , 2014, PloS one.

[14]  Benjamin J. Raphael,et al.  Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of Origin , 2014, Cell.

[15]  S. Hochreiter,et al.  Furby: fuzzy force-directed bicluster visualization , 2014, BMC Bioinformatics.

[16]  Damien Chaussabel,et al.  Democratizing systems immunology with modular transcriptional repertoire analyses , 2014, Nature Reviews Immunology.

[17]  Sampsa Hautaniemi,et al.  Biclustering Methods: Biological Relevance and Application in Gene Expression Analysis , 2014, PloS one.

[18]  Roberto Therón,et al.  BicOverlapper 2.0: visual analysis for gene expression , 2014, Bioinform..

[19]  R. Altman,et al.  Coherent Functional Modules Improve Transcription Factor Target Identification, Cooperativity Prediction, and Disease Association , 2014, PLoS genetics.

[20]  Kathleen Marchal,et al.  COLOMBOS v2.0: an ever expanding collection of bacterial expression compendia , 2013, Nucleic Acids Res..

[21]  James A. Thomson,et al.  Integrated Module and Gene-Specific Regulatory Inference Implicates Upstream Signaling Networks , 2013, PLoS Comput. Biol..

[22]  Mehmet Deveci,et al.  A comparative analysis of biclustering algorithms for gene expression data , 2013, Briefings Bioinform..

[23]  Or Zuk,et al.  Identification of transcriptional regulators in the mouse immune system , 2013, Nature Immunology.

[24]  A. Regev,et al.  Dynamic regulatory network controlling Th17 cell differentiation , 2013, Nature.

[25]  S. Horvath,et al.  Comparison of co-expression measures: mutual information, correlation, and model based indices , 2012, BMC Bioinformatics.

[26]  Julio Collado-Vides,et al.  RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more , 2012, Nucleic Acids Res..

[27]  Shane J. Neph,et al.  Circuitry and Dynamics of Human Transcription Factor Regulatory Networks , 2012, Cell.

[28]  David Z. Chen,et al.  Architecture of the human regulatory network derived from ENCODE data , 2012, Nature.

[29]  Ulrich Rückert,et al.  How Little Do We Actually Know? On the Size of Gene Regulatory Networks , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[30]  E. Furlong,et al.  Transcription factors: from enhancer binding to developmental control , 2012, Nature Reviews Genetics.

[31]  Diogo M. Camacho,et al.  Wisdom of crowds for robust gene network inference , 2012, Nature Methods.

[32]  P. Deloukas,et al.  Integrating Genome-Wide Genetic Variations and Monocyte Expression Data Reveals Trans-Regulated Gene Modules in Humans , 2011, PLoS genetics.

[33]  Michael Mitzenmacher,et al.  Detecting Novel Associations in Large Data Sets , 2011, Science.

[34]  R. Norel,et al.  The self-assessment trap: can we all be better than average? , 2011, Molecular systems biology.

[35]  Dario Floreano,et al.  GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods , 2011, Bioinform..

[36]  S. Ghosh,et al.  Crosstalk in NF-κB signaling pathways , 2011, Nature Immunology.

[37]  S. Horvath,et al.  Transcriptomic Analysis of Autistic Brain Reveals Convergent Molecular Pathology , 2011, Nature.

[38]  Riet De Smet,et al.  Advantages and limitations of current network inference methods , 2010, Nature Reviews Microbiology.

[39]  Dorothea Emig,et al.  Partitioning biological data with transitivity clustering , 2010, Nature Methods.

[40]  Ulrich Bodenhofer,et al.  FABIA: factor analysis for bicluster acquisition , 2010, Bioinform..

[41]  Julio Gonzalo,et al.  A comparison of extrinsic clustering evaluation metrics based on formal constraints , 2009, Information Retrieval.

[42]  S. Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[43]  Virginia Pascual,et al.  A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus. , 2008, Immunity.

[44]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[45]  Oded Maimon,et al.  Evaluation of gene-expression clustering via mutual information distance measure , 2007, BMC Bioinformatics.

[46]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[47]  Andy M. Yip,et al.  Gene network interconnectedness and the generalized topological overlap measure , 2007, BMC Bioinformatics.

[48]  Limin Fu,et al.  FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data , 2007, BMC Bioinformatics.

[49]  Natasa Przulj,et al.  Modelling protein–protein interaction networks via a stickiness index , 2006, Journal of The Royal Society Interface.

[50]  Lothar Thiele,et al.  A systematic comparison and evaluation of biclustering methods for gene expression data , 2006, Bioinform..

[51]  Ting Wang,et al.  An improved map of conserved regulatory sites for Saccharomyces cerevisiae , 2006, BMC Bioinformatics.

[52]  Patrik D'haeseleer,et al.  How does gene expression clustering work? , 2005, Nature Biotechnology.

[53]  J. Mesirov,et al.  Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data , 2003, Machine Learning.

[54]  Vladimir Estivill-Castro,et al.  Why so many clustering algorithms: a position paper , 2002, SKDD.

[55]  Richard M. Karp,et al.  Discovering local structure in gene expression data: the order-preserving submatrix problem , 2002, RECOMB '02.

[56]  S. Dongen Graph clustering by flow simulation , 2000 .

[57]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Marcelo Mendoza,et al.  Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications , 2017, Lecture Notes in Computer Science.

[59]  Olatz Arbelaitz,et al.  An extensive comparative study of cluster validity indices , 2013, Pattern Recognit..

[60]  David C. Wilson,et al.  Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease , 2012, Nature.

[61]  Seungchan Kim,et al.  Clustering Context-Specific Gene Regulatory Networks , 2010, Pacific Symposium on Biocomputing.

[62]  Pierre-Antoine Absil,et al.  Elucidating the Altered Transcriptional Programs in Breast Cancer using Independent Component Analysis , 2007, PLoS Comput. Biol..

[63]  Anbupalam Thalamuthu,et al.  Gene expression Evaluation and comparison of gene clustering methods in microarray analysis , 2006 .

[64]  S. Datta,et al.  Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes , 2006, BMC Bioinformatics.

[65]  L. Lazzeroni Plaid models for gene expression data , 2000 .

[66]  Stanton A. Glantz,et al.  Primer of biostatistics : statistical software program version 6.0 , 1981 .