Decentralized Robust Vibration Control of Smart Structures with Parameter Uncertainties

This study deals with decentralized robust vibration control of a smart composite panel with parameter uncertainties. The composite panel with four collocated piezoelectric actuators and velocity sensors is modeled using finite element method, and then the size of the model is reduced in the state space using Modal Hankel Singular Value. The parameter uncertainties presented by natural frequencies and modal damping ratios are considered in controller design process. To suppress the vibration induced by external disturbance, a decentralized robust H∞ controller is developed using linear matrix inequality techniques. Numerical simulation for the smart panel is performed in order to investigate the effectiveness of decentralized vibration control (DVC). When the system is subjected to an initial displacement field or distributed white noise disturbance, numerical results show that the DVC system is very effective. Although there are 20% parameter uncertainties for modal frequencies, damping ratio, and control input, the decentralized controller can effectively suppress the vibration excited by the external disturbance. Furthermore, the decentralized controller composed of four three-order systems can be practically implemented well.

[1]  E. Crawley,et al.  Use of piezoelectric actuators as elements of intelligent structures , 1987 .

[2]  Haiping Du,et al.  H∞ Controller Design of Mixed Eigenstructure Assignment and H∞ Filter for Flexible Structure Vibration Control , 2003, Intell. Autom. Soft Comput..

[3]  Xianmin Zhang,et al.  Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate , 2007 .

[4]  Y. Aoki,et al.  Modelling of a piezoceramic patch actuator for velocity feedback control , 2008 .

[5]  Michael J. Brennan,et al.  Decentralized control for multichannel active vibration isolation , 2001, IEEE Trans. Control. Syst. Technol..

[6]  Vasundara V. Varadan,et al.  Design of Robust Vibration Controller for a Smart Panel Using Finite Element Model , 2002 .

[7]  Singiresu S Rao,et al.  Recent Advances in Sensing and Control of Flexible Structures Via Piezoelectric Materials Technology , 1999 .

[8]  Gangbing Song,et al.  Thermal deformation compensation of a composite beam using piezoelectric actuators , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[9]  Paolo Gardonio,et al.  Active vibroacoustic control with multiple local feedback loops , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[10]  Michael Athans,et al.  Survey of decentralized control methods for large scale systems , 1978 .

[11]  Jian-Ping Jiang,et al.  Finite element formulations for thermopiezoelastic laminated composite plates , 2008 .

[12]  I. Petersen A stabilization algorithm for a class of uncertain linear systems , 1987 .

[13]  Qiu Yang,et al.  Active control of vibration using a fuzzy control method , 2004 .

[14]  Alain Berry,et al.  Decentralized harmonic active vibration control of a flexible plate using piezoelectric actuator-sensor pairs. , 2006, The Journal of the Acoustical Society of America.

[15]  Daniel J. Inman,et al.  Modeling and control for vibration suppression of a flexible active structure , 1995 .

[16]  Michael J. Brennan,et al.  Active vibroacoustic control with multiple local feedback loops. , 2002 .

[17]  Ning Chen,et al.  Robust decentralized H˞ control of multi-channel systems with norm-bounded parametric uncertainties , 2005 .

[18]  Xianmin Zhang,et al.  ROBUST H∞VIBRATION CONTROL FOR FLEXIBLE LINKAGE MECHANISM SYSTEMS WITH PIEZOELECTRIC SENSORS AND ACTUATORS , 2001 .

[19]  J. Lin,et al.  Experimental evaluation of a piezoelectric vibration absorber using a simplified fuzzy controller in a cantilever beam , 2006 .

[20]  J. Dias Rodrigues,et al.  Active vibration control of smart piezoelectric beams: Comparison of classical and optimal feedback control strategies , 2006 .

[21]  Inderjit Chopra,et al.  Review of State of Art of Smart Structures and Integrated Systems , 2002 .

[22]  Partha Bhattacharya,et al.  Finite element analysis and distributed control of laminated composite shells using LQR/IMSC approach , 2002 .

[23]  M. C. Ray,et al.  Optimal Control of Laminated Shells Using Piezoelectric Sensor and Actuator Layers , 2003 .

[24]  T. K. Caughey,et al.  On the stability problem caused by finite actuator dynamics in the collocated control of large space structures , 1985 .

[25]  Tetsuya Iwasaki,et al.  All controllers for the general H∞ control problem: LMI existence conditions and state space formulas , 1994, Autom..

[26]  Jan Lunze,et al.  Feedback control of large-scale systems , 1992 .

[27]  Chen Ning,et al.  Robust decentralized H ∞ control of multi-channel systems with norm-bounded parametric uncertainties , 2007 .

[28]  Stephen J. Elliott,et al.  Internal Velocity Feedback for Stabilisation of Inertial Actuators for Active Vibration Control , 2005 .

[30]  Stephen J. Elliott,et al.  Centralized and decentralized control of structural vibration and sound radiation , 2006 .