Photodetachment spectroscopy of the C2nH− (n=2–4) anions in the vicinity of their electron detachment threshold

The electronic spectra of the C2nH(D)−, n=2–4, anions have been observed in the gas phase using photodetachment spectroscopy. These are assigned to 1Π←X 1Σ+ electronic transitions. The 1Π excited states possess a dipole bound character indicated by the energetic proximity between the origin of the transitions and electron affinities. The dipole bound states are related to the X 2Π ground states of C6H and C8H whereas for C4H, which has an X 2Σ+ ground state, the 2Π is an excited state. Vibronic coupling through a bending motion of the carbon skeleton is inferred to be the reason of the stabilization of this state.

[1]  J. Maier,et al.  Electronic transition of C3H− in the vicinity of the lowest photodetachment threshold , 2001 .

[2]  F. Güthe,et al.  Photodetachment Spectrum of l-C3H2-: The Role of Dipole Bound States for Electron Attachment in Interstellar Clouds , 2001 .

[3]  J. Geiss,et al.  Ab initio calculations of excited states in C4H and implications for ultraviolet photodissociation , 2001 .

[4]  V. Bierbaum,et al.  Reactions of C-n and CnH- with Atomic and Molecular Hydrogen , 2001 .

[5]  H. Kroto C60 and carbon: a postbuckminsterfullerene perspective , 2000 .

[6]  E. Herbst,et al.  Radiative electron attachment to small linear carbon clusters and its significance for the chemistry of diffuse interstellar clouds , 2000 .

[7]  K. Aoki Candidates for U-lines at 1377 and 1394 MHz in IRC+10216: ab initio molecular orbital study , 2000 .

[8]  P. Sarre The diffuse interstellar bands: a dipole-bound state hypothesis , 2000 .

[9]  E. Herbst,et al.  The Physics and Chemistry of Small Translucent Molecular Clouds. XIII. The Basic Hydrocarbon Chemistry , 2000 .

[10]  M. Schnaiter,et al.  Electronic Spectra of the Carbon Chain Anions C2n-1H- (n=5-8) in the Gas Phase , 1999 .

[11]  M. Schnaiter,et al.  Electronic spectra of carbon chain anions: C2nH− (n=5–12) , 1999 .

[12]  P. Thaddeus,et al.  Observations of Long CnH Molecules in the Dust Cloud TMC-1 , 1999 .

[13]  J. Maier,et al.  Electronic absorption spectra of C2nH−, C2n−1N− (n=4–7), and C2n−1N (n=3–7) chains in neon matrices , 1999 .

[14]  D. Neumark,et al.  Photoelectron spectra of the C2nH− (n=1–4) and C2nD− (n=1–3) anions , 1998 .

[15]  H. Kohguchi,et al.  Laser-induced fluorescence spectroscopy of the C4H and C4D radicals in a supersonic jet , 1998 .

[16]  P. Thaddeus,et al.  New carbon chains in the laboratory and in interstellar space , 1998 .

[17]  W. C. Lineberger,et al.  Autodetachment spectroscopy and dynamics of dipole bound states of negative ions: 2A1–2B1 transitions of H2CCC− , 1996 .

[18]  W. C. Lineberger,et al.  Autodetachment spectroscopy and dynamics of vibrationally excited dipole‐bound states of H2CCC− , 1996 .

[19]  H. Abdoul-Carime,et al.  On the binding of electrons to nitromethane: Dipole and valence bound anions , 1996 .

[20]  H. Abdoul-Carime,et al.  GROUND-STATE DIPOLE-BOUND ANIONS , 1996 .

[21]  M. Horn,et al.  Structure of the CCCN and CCCCH radicals: Isotopic substitution and ab initio theory , 1995 .

[22]  D. Woon A correlated ab initio study of linear carbon-chain radicals CnH (n = 2-7). , 1995, Chemical physics letters.

[23]  Peter Botschwina,et al.  Quantum-chemical investigations of small molecular anions , 1995 .

[24]  W. Koch,et al.  Quantum chemical predictions of the electron affinities of carbon-hydrogen clusters C2n H·, the CH binding energies and the gas phase acidities of polyacetylenes C2n H2 for n = 1–3 , 1995 .

[25]  L. Adamowicz,et al.  Ab initio characterization of electronically excited states in highly unsaturated hydrocarbons , 1995 .

[26]  H. Schwarz,et al.  Combined experimental and theoretical study of the C-H bond strength and the gas phase acidity of triacetylene, C6H2, and the electron affinity of the C6H. radical , 1994 .

[27]  J. Maier,et al.  The geometric and electronic structures of C6H and its ions , 1994 .

[28]  T. Millar,et al.  A NEW CHEMICAL-MODEL OF THE CIRCUMSTELLAR ENVELOPE SURROUNDING IRC+10216 , 1994 .

[29]  M. Kolbuszewski The C4H radical and the diffuse interstellar bands. An ab initio study , 1994 .

[30]  D. Clary,et al.  INTERSTELLAR CARBON CHEMISTRY : REACTION RATES OF NEUTRAL ATOMIC CARBON WITH ORGANIC MOLECULES , 1994 .

[31]  I. Cherchneff,et al.  The Formation of Carbon Chain Molecules in IRC +10216 , 1993 .

[32]  S. S. Sidhu,et al.  The Homogeneous Pyrolysis of Acetylene II: The High Temperature Radical Chain Mechanism , 1992 .

[33]  A. D. McLean,et al.  Is interstellar detection of higher members of the linear radicals CnCH and CnN feasible? , 1991, The Astrophysical journal.

[34]  W. C. Lineberger,et al.  Photoelectron spectra of dicarbon(1-) and ethynyl(1-) , 1991 .

[35]  Robert J. Kee,et al.  Chemical Kinetics and Combustion Modeling , 1990 .

[36]  Q. Fan,et al.  Theoretical study of linear Cn (n=6−10) and HCnH (n=2−10) molecules , 1989 .

[37]  W. C. Lineberger,et al.  Autodetachment spectroscopy and dynamics of CH2CN− and CD2CN− , 1987 .

[38]  G. Ellison,et al.  Photoelectron spectroscopy of radical anions , 1986 .

[39]  E. Gottlieb,et al.  Laboratory detection of the C3N an C4H free radicals , 1983 .

[40]  J. Gauyacq,et al.  Nuclear-excited Feshbach resonances in e+HCl scattering , 1982 .

[41]  A. Charo,et al.  Laboratory millimeter and submillimeter spectrum of HOC , 1981 .

[42]  L. Cederbaum,et al.  On the interpretation of low-energy electron-HCl scattering phenomena , 1981 .

[43]  P. Thaddeus,et al.  Detection of the C4H radical toward IRC plus 10216 , 1978 .

[44]  Wj The HMO-model and its application , 1977 .

[45]  Hans Bock,et al.  HMO model and its application , 1976 .

[46]  P. Thaddeus,et al.  The ethynyl radical C2H - A new interstellar molecule , 1974 .

[47]  W. J. O-T. Molecular spectra and molecular structure. Vol. III. Electronic spectra and electronic structure of polyatomic molecules . by O. Herzberg, D. Van Nostrand Co. Inc., Princeton, N.J., 1966, pp. 745, price £ 9.6s.6d , 1970 .

[48]  E. Wigner On the Behavior of Cross Sections Near Thresholds , 1948 .