The price of certainty: "waterslide curves" and the gap to capacity

The classical problem of reliable point-to-point digital communication is to achieve a low probability of error while keeping the rate high and the total power consumption small. Traditional information-theoretic analysis uses `waterfall' curves to convey the revolutionary idea that unboundedly low probabilities of bit-error are attainable using only finite transmit power. However, practitioners have long observed that the decoder complexity, and hence the total power consumption, goes up when attempting to use sophisticated codes that operate close to the waterfall curve. This paper gives an explicit model for power consumption at an idealized decoder that allows for extreme parallelism in implementation. The decoder architecture is in the spirit of message passing and iterative decoding for sparse-graph codes. Generalized sphere-packing arguments are used to derive lower bounds on the decoding power needed for any possible code given only the gap from the Shannon limit and the desired probability of error. As the gap goes to zero, the energy per bit spent in decoding is shown to go to infinity. This suggests that to optimize total power, the transmitter should operate at a power that is strictly above the minimum demanded by the Shannon capacity. The lower bound is plotted to show an unavoidable tradeoff between the average bit-error probability and the total power used in transmission and decoding. In the spirit of conventional waterfall curves, we call these `waterslide' curves.

[1]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[2]  Ruján Finite temperature error-correcting codes. , 1993, Physical review letters.

[3]  Robert J. McEliece,et al.  On the complexity of reliable communication on the erasure channel , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[4]  H. Witsenhausen Separation of estimation and control for discrete time systems , 1971 .

[5]  Anantha P. Chandrakasan,et al.  Coding Under Observation Constraints , 2007 .

[6]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[7]  Christopher Rose,et al.  Inscribed matter as an energy-efficient means of communication with an extraterrestrial civilization , 2004, Nature.

[8]  Igal Sason,et al.  An Improved Sphere-Packing Bound for Finite-Length Codes Over Symmetric Memoryless Channels , 2006, IEEE Transactions on Information Theory.

[9]  David Tse,et al.  Mobility increases the capacity of ad hoc wireless networks , 2002, TNET.

[10]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[11]  Brian M. Sadler,et al.  Fundamentals of energy-constrained sensor network systems , 2005, IEEE Aerospace and Electronic Systems Magazine.

[12]  Igal Sason,et al.  Accumulate–Repeat–Accumulate Codes: Capacity-Achieving Ensembles of Systematic Codes for the Erasure Channel With Bounded Complexity , 2007, IEEE Transactions on Information Theory.

[13]  Anant Sahai Why Do Block Length and Delay Behave Differently if Feedback Is Present? , 2008, IEEE Transactions on Information Theory.

[14]  Shlomo Shamai,et al.  Performance Analysis of Linear Codes under Maximum-Likelihood Decoding: A Tutorial , 2006, Found. Trends Commun. Inf. Theory.

[15]  Mani Srivastava,et al.  Energy-aware wireless microsensor networks , 2002, IEEE Signal Process. Mag..

[16]  Christian Schlegel,et al.  Error Control Coding in Low-Power Wireless Sensor Networks: When Is ECC Energy-Efficient? , 2006, EURASIP J. Wirel. Commun. Netw..

[17]  G. David Forney,et al.  Convolutional Codes II. Maximum-Likelihood Decoding , 1974, Inf. Control..

[18]  Pulkit Grover,et al.  Upper Bounds on the Rate of LDPC Codes for a Class of Finite-State Markov Channels , 2007, IEEE Transactions on Information Theory.

[19]  Amos Lapidoth,et al.  A Hot Channel , 2007, 2007 IEEE Information Theory Workshop.

[20]  Sergio Verdú,et al.  On channel capacity per unit cost , 1990, IEEE Trans. Inf. Theory.

[21]  SahaiA.,et al.  The Necessity and Sufficiency of Anytime Capacity for Stabilization of a Linear System Over a Noisy Communication Link—Part I , 2006 .

[22]  P. Grover,et al.  Bounds on the Tradeoff Between Decoding Complexity and Rate for Sparse-Graph Codes , 2007, 2007 IEEE Information Theory Workshop.

[23]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[24]  Jan M. Rabaey,et al.  PicoRadio Supports Ad Hoc Ultra-Low Power Wireless Networking , 2000, Computer.

[25]  Luca Benini,et al.  Specification and analysis of power-managed systems , 2004, Proceedings of the IEEE.

[26]  A. Sahai,et al.  A general lower bound on the decoding complexity of sparse-graph codes , 2007 .

[27]  Anantha Chandrakasan,et al.  Upper bounds on the lifetime of sensor networks , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).

[28]  Igal Sason,et al.  Bounds on the number of iterations for turbo-like ensembles over the binary erasure channel , 2009, IEEE Trans. Inf. Theory.

[29]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[30]  G. David Forney,et al.  Convolutional Codes III. Sequential Decoding , 1974, Inf. Control..

[31]  D. Burshtein,et al.  Upper bounds on the rate of LDPC codes , 2002, Proceedings IEEE International Symposium on Information Theory,.

[32]  Andrea J. Goldsmith,et al.  Energy-constrained modulation optimization , 2005, IEEE Transactions on Wireless Communications.

[33]  James L. Massey,et al.  Deep-space communications and coding: A marriage made in heaven , 1992 .

[34]  A. Chandrakasan,et al.  Energy-efficient DSPs for wireless sensor networks , 2002, IEEE Signal Process. Mag..

[35]  G. David Forney,et al.  Exponential error bounds for erasure, list, and decision feedback schemes , 1968, IEEE Trans. Inf. Theory.

[36]  Pamela Youssef-Massaad Impact of Processing Energy on the Capacity of Wireless Channels , 2005 .

[37]  Paul J. M. Havinga,et al.  Minimizing energy consumption for wireless computers in Moby Dick , 1997, 1997 IEEE International Conference on Personal Wireless Communications (Cat. No.97TH8338).

[38]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[39]  Kristofer S. J. Pister,et al.  Smart Dust: Communicating with a Cubic-Millimeter Computer , 2001, Computer.

[40]  Alexander Barg,et al.  Error exponents of expander codes , 2002, IEEE Trans. Inf. Theory.

[41]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[42]  Frederick Jelinek Upper bounds on sequential decoding performance parameters , 1974, IEEE Trans. Inf. Theory.

[43]  Rüdiger L. Urbanke,et al.  Parity-check density versus performance of binary linear block codes over memoryless symmetric channels , 2003, IEEE Transactions on Information Theory.

[44]  Aamod Dinkar Khandekar,et al.  Graph-based codes and iterative decoding , 2003 .

[45]  Mani B. Srivastava,et al.  Modulation scaling for Energy Aware Communication Systems , 2001, ISLPED '01.

[46]  Achilleas Anastasopoulos,et al.  Capacity-Achieving Codes with Bounded Graphical Complexity on Noisy Channels , 2005, ArXiv.

[47]  Prathima Agrawal Energy efficient protocols for wireless systems , 1998 .

[48]  Naresh R. Shanbhag,et al.  A Mathematical Basis For Power-Reduction In Digital VLSI Systems , 1997 .

[49]  Igal Sason,et al.  Bounds on the Number of Iterations for Turbo-Like Ensembles Over the Binary Erasure Channel , 2007, IEEE Transactions on Information Theory.

[50]  Simon Litsyn,et al.  Upper bounds on the rate of LDPC codes as a function of minimum distance , 2002, IEEE Transactions on Information Theory.

[51]  Achilleas Anastasopoulos,et al.  Capacity-Achieving Codes for Noisy Channels with Bounded Graphical Complexity and Maximum Likelihood Decoding , 2006 .

[52]  Michael Lentmaier,et al.  An analysis of the block error probability performance of iterative decoding , 2005, IEEE Transactions on Information Theory.

[53]  Luca Benini,et al.  Error control schemes for on-chip communication links: the energy-reliability tradeoff , 2005, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[54]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[55]  Elwyn R. Berlekamp,et al.  A lower bound to the distribution of computation for sequential decoding , 1967, IEEE Trans. Inf. Theory.

[56]  Lang Tong,et al.  Sensor Networks With Mobile Access: Energy and Capacity Considerations , 2006, IEEE Transactions on Communications.

[57]  Andrea J. Goldsmith,et al.  Design challenges for energy-constrained ad hoc wireless networks , 2002, IEEE Wirel. Commun..

[58]  Anthony Ephremides,et al.  Energy concerns in wireless networks , 2002, IEEE Wirel. Commun..

[59]  Rüdiger L. Urbanke,et al.  Capacity-achieving ensembles for the binary erasure channel with bounded complexity , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[60]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[61]  Christina Fragouli,et al.  Silence is golden and time is money: power-aware communication for sensor networks , 2005 .

[62]  M. Srivastava,et al.  Modulation scaling for energy aware communication systems , 2001, ISLPED'01: Proceedings of the 2001 International Symposium on Low Power Electronics and Design (IEEE Cat. No.01TH8581).

[63]  L.R. Varshney,et al.  Performance of LDPC Codes Under Noisy Message-Passing Decoding , 2007, 2007 IEEE Information Theory Workshop.

[64]  Charles J. Colbourn,et al.  Optimal Memoryless Encoding for Low Power Off-Chip Data Buses , 2006, 2006 IEEE/ACM International Conference on Computer Aided Design.

[65]  Anant Sahai,et al.  The Necessity and Sufficiency of Anytime Capacity for Stabilization of a Linear System Over a Noisy Communication Link—Part I: Scalar Systems , 2006, IEEE Transactions on Information Theory.

[66]  Aaron D. Wyner,et al.  Coding Theorems for a Discrete Source With a Fidelity CriterionInstitute of Radio Engineers, International Convention Record, vol. 7, 1959. , 1993 .

[67]  Charles J. Colbourn,et al.  Optimal Memoryless Encoding for Low Power Off-Chip Data Buses , 2006, 2006 IEEE/ACM International Conference on Computer Aided Design.

[68]  Ken Mai,et al.  The future of wires , 2001, Proc. IEEE.

[69]  Donald F. Towsley,et al.  Optimal Power Allocation in Wireless Networks with Transmitter-Receiver Power Tradeoffs , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[70]  Prathima Agrawal Energy efficient protocols for wireless systems , 1998, Ninth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (Cat. No.98TH8361).

[71]  Anantha Chandrakasan,et al.  Energy reduction in VLSI computation modules: an information-theoretic approach , 2003, IEEE Trans. Inf. Theory.

[72]  Venkatesan Guruswami,et al.  Linear-time encodable/decodable codes with near-optimal rate , 2005, IEEE Transactions on Information Theory.

[73]  Rüdiger L. Urbanke,et al.  Efficient encoding of low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[74]  Amos Lapidoth,et al.  A Channel that Heats Up , 2007, 2007 IEEE International Symposium on Information Theory.

[75]  Gabor Karsai,et al.  Smart Dust: communicating with a cubic-millimeter computer , 2001 .