Two Dimensional Combined Complementary Sequence and Its Application in Multi-Carrier CDMA

Multi-Carrier CDMA (MC-CDMA) has been considered as a combination of the techniques of Code Division Multiple Access (CDMA) and Orthogonal Frequency Division Multiplex (OFDM). However, even until now, the efficient MC-CDMA scheme is still under study because of the inherent bugs in OFDM, such as the troubles caused by Multiple Access Interference (MAI) and Peak to Average Power Ratio (PAPR). In this paper, we present a novel two-dimensional spreading sequence named Two Dimensional Combined Complementary Sequence (TDC). If we take this kind of sequences as spreading codes, several prominent advantages can be achieved compared with traditional MC-CDMA. First, it can achieve MAI free in the multi-path transmission both in uplink and downlink. Second, it offers low PAPR value within 3 dB with a quite simple architecture. The last but not the least, the proposed MC-CDMA scheme turns out to be an efficient approach with high bandwidth efficiency, high spreading efficiency and flexible transmission rate enriched by a special shift-and-add modulation. Meanwhile, an algorithm that constructs TDC sequences is discussed in details. Based on above results, we can get the conclusion that the novel TDC sequences and corresponding MC-CDMA architecture have great potential for applications in next generation wireless mobile communications, which require high transmission rate in hostile and complicated channels.