A hybrid‐kinetic model for high‐β plasmas

A hybrid‐kinetic model (Vlasov ions and drift‐kinetic electrons) is developed to describe the equilibrium and stability properties of collisionless high‐beta plasmas in arbitrary magnetic field configurations. No ordering of ion properties (such as ω/Ωi and rLi/L⊥) is assumed, so the ions are described by the exact (unexpanded) Vlasov equation. The electrons are assumed to be strongly magnetized with ω/Ωe ∼rLe/L⊥=e≪1, and the electron Vlasov equation is expanded in e to give a drift‐kinetic equation for fe. Examples of linear screw‐pinch equilibria are constructed to demonstrate the ease with which equilibrium solutions are found within this formalism. Also, it is shown that the hybrid‐kinetic model correct to O (e) includes physical effects which are important during the implosion and immediate post‐implosion phases of high‐density pinch experiments, where stability behavior is characterized by the fast time scale ω−1LH= (ΩeΩi)−1/2. In particular, a local dispersion relation is derived for the modified‐t...

[1]  N. T. Gladd,et al.  Anomalous transport properties associated with the lower‐hybrid‐drift instability , 1975 .

[2]  D. Batchelor,et al.  Kinetic description of linear theta-pinch equilibria , 1975, Journal of Plasma Physics.

[3]  R. Kristal,et al.  Toroidal mode structure in the Scyllac full torus , 1975 .

[4]  Y. Pao Guiding-centre diffuse pinch and local instability , 1974 .

[5]  A. Sen,et al.  Electromagnetic and ∇B-effects on the modified two-stream instability , 1973 .

[6]  N. A. Krall,et al.  Principles of Plasma Physics , 1973 .

[7]  N. A. Krall,et al.  Self‐consistent approach to anomalous resistivity applied to theta pinch experiments , 1973 .

[8]  W. Horton,et al.  Equilibrium and electrostatic stability theory of tokamaks from the drift-kinetic equation , 1973 .

[9]  D. Düchs Controlled Fusion and Plasma Physics: Report on the Fifth European Conference held in Grenoble, France, 21–25 August 1972 , 1972 .

[10]  J. Freidberg Vlasov‐Fluid Model for Studying Gross Stability of High‐β Plasmas , 1972 .

[11]  E. Bowers Finite-Larmor-radius equations for coffisionless plasmas in general magnetic fields , 1971, Journal of Plasma Physics.

[12]  G. Goldenbaum,et al.  Experimental Study of the Magnetic Piston‐Shock Wave Problem in a Collisionless Plasma , 1971 .

[13]  N. A. Krall,et al.  Low-Frequency Instabilities in Magnetic Pulses , 1971 .

[14]  J. Freidberg,et al.  RIGID DRIFT MODEL OF HIGH-TEMPERATURE PLASMA CONTAINMENT. , 1970 .

[15]  J. Taylor,et al.  Stability of general plasma equilibria - I formal theory , 1968 .

[16]  E. Frieman,et al.  Drift Instabilities in General Magnetic Field Configurations , 1968 .

[17]  K. Stepanov,et al.  Plasma instability in the electric field of an ion-cyclotron wave , 1967 .

[18]  J. M. Greene,et al.  Evaluation of the gyro-viscous stress , 1967 .

[19]  H. Grad Magneto-Fluid and Plasma Dynamics , 1967 .

[20]  R. Davidson INVARIANT OF THE HIGHER-ORDER CHEW--GOLDBERGER--LOW THEORY. , 1967 .

[21]  H. Grad TOROIDAL CONTAINMENT OF A PLASMA. , 1967 .

[22]  A. Kadish Exponential Stability of Non‐uniform Guiding Center Plasma , 1967 .

[23]  J. Taylor,et al.  ADIABATIC INVARIANTS AND THE EQUILIBRIUM OF MAGNETICALLY TRAPPED PARTICLES. 2. MATHEMATICAL DETAILS. , 1967 .

[24]  E. Frieman,et al.  Higher‐Order Corrections to the Chew‐Goldberger‐Low Theory , 1966 .

[25]  C. Kennel,et al.  Finite Larmor radius hydromagnetics , 1966 .

[26]  A. Macmahon Finite Gyro‐Radius Corrections to the Hydromagnetic Equations for a Vlasov Plasma , 1965 .

[27]  M. Rosenbluth,et al.  Finite Larmor Radius Equations with Nonuniform Electric Fields and Velocities , 1965 .

[28]  K. Roberts,et al.  Magnetohydrodynamic Equations for Finite Larmor Radius , 1962 .

[29]  S. Chandrasekhar,et al.  Properties of an lonized gas of low density in a magnetic field: Part IV , 1957 .

[30]  F. Low,et al.  The Boltzmann equation an d the one-fluid hydromagnetic equations in the absence of particle collisions , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.