LMI-based tracking control for Takagi-Sugeno fuzzy model

Mohamed Amine.BEN BRAHIM LA.R.A Laboratory National Engineering School of Tunis Tunis,Tunisia mohamedamine.benbrahim@enit.rnu.tn C.GHORBEL, A.ABDELKRIM and M.BENREJEB LA.R.A Laboratory National Engineering School of Tunis Tunis,Tunisia chekib.ghorbel@yahoo.fr afef.abdelkrim@esti.rnu.tn mohamed.benrejeb@enit.rnu.tn Abstract — This present paper deals with the problem of control for Takagi-Sugeno fuzzy model. Based on the quadratic Lyapunov function, an LMI (Linear Matrix Inequality) formulation is suggested to make possible the convergence of the state vector of the discrete-time system to the origin. A first application addresses the inverted pendulum fourth-order unstable system that is modeled by the fuzzy Takagi-Sugeno approach. A second application is a fourth order unstable nonlinear complex system which is studied to illustrate the efficiency of th e LMI formulation. Keywords-Multimodel,fuzzyTakagi-Sugeno,LMI approach, inverted pendulum I. iI

[1]  Chun-Hsiung Fang,et al.  A new LMI-based approach to relaxed quadratic stabilization of T-S fuzzy control systems , 2006, IEEE Trans. Fuzzy Syst..

[2]  M. Vidyasagar,et al.  Nonlinear systems analysis (2nd ed.) , 1993 .

[3]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[4]  Yung-Sheng Liu,et al.  A new LMI-based approach to relaxed quadratic stabilization of T-S fuzzy control systems , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[5]  Kazuo Tanaka,et al.  An approach to fuzzy control of nonlinear systems: stability and design issues , 1996, IEEE Trans. Fuzzy Syst..

[6]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  Chekib Ghorbel,et al.  Contrôle de poursuite d’un système complexe décrit par l’approche algébrique de Kharitonov : Approche LMI , 2010 .

[8]  M. Benrejeb,et al.  An adaptive fuzzy control of continuous nonlinear systems , 2009, 2009 6th International Multi-Conference on Systems, Signals and Devices.

[9]  J. Ragot,et al.  On the stability analysis of multiple model systems , 2001, 2001 European Control Conference (ECC).

[10]  A. Akhenak Conception d'observateurs non linéaires par approche multimodèle : application au diagnostic , 2004 .

[11]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[12]  Kazuo Tanaka,et al.  Fuzzy control systems design and analysis , 2001 .

[13]  Kazuo Tanaka,et al.  Stability analysis and design of fuzzy control systems , 1992 .

[14]  Kazuo Tanaka,et al.  Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs , 1998, IEEE Trans. Fuzzy Syst..

[15]  A. Rantzer,et al.  Piecewise quadratic stability for affine Sugeno systems , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[16]  Zengqi Sun,et al.  Analysis and design of fuzzy controller and fuzzy observer , 1998, IEEE Trans. Fuzzy Syst..

[17]  Euntai Kim,et al.  New approaches to relaxed quadratic stability condition of fuzzy control systems , 2000, IEEE Trans. Fuzzy Syst..

[18]  Mohamed Benrejeb,et al.  Observers for Continuous Non-Linear Systems Containing Unknown Parameters and Described by Takagi-Sugeno Fuzzy Model , 2010, Control. Intell. Syst..

[19]  Zohra Kardous Sur la modélisation et la commande multimodèle des processus complexes et/ou incertains , 2004 .

[20]  Kazuo Tanaka,et al.  Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach , 2008 .

[21]  Vladimir A. Yakubovich,et al.  Linear Matrix Inequalities in System and Control Theory (S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan) , 1995, SIAM Rev..

[22]  Joongseon Joh,et al.  On the stability issues of linear Takagi-Sugeno fuzzy models , 1998, IEEE Trans. Fuzzy Syst..