Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics

Kyle J. Gaulton | David S. Fischer | Malte D. Luecken | Joshua D. Campbell | Daniel T. Montoro | Adam L. Haber | Ravi S. Misra | S. Linnarsson | A. Regev | E. Lander | L. Penland | G. Getz | C. Conrad | J. Sanes | J. Marioni | J. Seidman | A. Brazma | M. Krasnow | P. Ellinor | J. Shu | Joshua Gould | G. Koppelman | Zhichao Miao | M. Wadsworth | C. Ziegler | A. Villani | O. Rozenblatt-Rosen | A. Shalek | T. Mariani | Rahul Sinha | K. Travaglini | Ahmad N. Nabhan | K. Meyer | P. Horváth | N. Hübner | M. Haniffa | J. Lundeberg | M. Nawijn | Kun Zhang | R. Bhattacharyya | M. Lako | C. Marquette | S. Leroy | N. Kaminski | D. Juric | C. Samakovlis | Xiaohui Zhang | Gang Liu | M. Lenburg | A. Spira | J. Beane | C. Seidman | R. Sit | A. Gillich | R. Metzger | Emelie Braun | C. Smillie | Kamil Slowikowski | J. Holden-Wiltse | Elena Torlai Triglia | Josalyn L Cho | B. Medoff | S. Preissl | Hattie Chung | Gökçen Eraslan | M. Guo | J. Whitsett | Yan Xu | L. Hariri | A. Tsankov | Wenjun Yan | Inbal Benhar | H. Schiller | K. Jagadeesh | K. Rieger-Christ | T. Sullivan | P. Barbry | P. Jiang | Samuel J. Allon | E. D. Vaishnav | O. Eickelberg | L. Vallier | H. Maatz | M. Noseda | G. Pryhuber | J. Schultze | M. Chaffin | A. Jaiswal | J. Kropski | K. Saeb‐Parsy | Olivier B. Poirion | M. Farzan | K. Baßler | M. Seibold | K. Manakongtreecheep | N. Tucker | C. Muus | C. Talavera-López | Hongbo Zhang | G. Oudit | Justin Buchanan | Joshua Chiou | Xiaomeng Hou | Allen Wang | J. Tantivit | B. Lin | Avinash Waghray | L. Zaragosi | F. Theis | H. Huyck | J. Spence | Ayshwarya Subramanian | Julia Waldman | P. Reyfman | A. Habermann | N. Banovich | R. Xavier | J. Schupp | M. Slyper | L. Mamanova | S. Ghazanfar | L. Sikkema | E. Duong | Evgenij Fiskin | M. Ansari | Sijia Chen | T. Adams | H. Aliee | I. Angelidis | C. Bécavin | L. Bolt | L. Bui | E. Chichelnitskiy | T. Conlon | Michael S. Cuoco | M. Deprez | A. Gutierrez | T. Harvey | Peng He | T. Kapellos | E. Madissoon | Sarah K. Nyquist | S. Poli | Cancan Qi | N. Smith | A. Sountoulidis | M. Strunz | Peng Tan | K. Vernon | Xiuting Wang | William Zhao | A. Misharin | S. Lukassen | C. Falk | Darin Zerti | J. Collin | R. Queen | A. Gellman | Yuk Ming Dennis Lo | Leif S. Ludwig | Malte Kuhnemund | R. Lafyatis | Haeock Lee | M. Nikolić | J. Rajagopal | E. Rawlins | D. Shepherd | M. van den Berge | Bruno Giotti | Žaneta Andrusivová | E. Sundström | M. Reid | A. Yildirim | C. Mayr | G. Deutsch | A. Faiz | K. Black | K. de Jong | Ross J. Metzger | J. Alladina | Josalyn L. Cho | Anna S. E. Cuomo | Lu Ji | D. Pe’er | A. Weins | Wendy Luo | M. Hennon | A. Greka | C. Poole | Michael A. Leney-Greene | T. van Zyl | A. Segrè | Xin Sun | Yan Hu | L. Larsson | L. Bergenstråhle | Deborah T. Hung | J. Powell | L. Rogers | A. Mcadams | W. Janssen | J. Bergenstråhle | M. Litviňuková | Peiwen Cai | R. Eils | M. Rojas | J. Campbell | Denise Fine | D. Reichart | Sarah Mazzilli | J. Ordovas-Montañes | Lijuan Hu | Kyungtaek Lim | Ian M. Mbano | I. Glass | Yoshihiko Kobayashi | K. Xu | Ivan Rosas | Xingyi Shi | Sarah A. Teichmann | R. Schwarz | Orr Ashenberg | Peng Tan | P. R. Tata | D. Sun | Graham S. Heimberg | Christin S Kuo | Stephen R. Quake | S. Callori | Grant E. Duclos | C. Shea | Gail H. Jennifer Kyle J. Jeanne Heidie L. Thomas J. Rav Deutsch Dutra Gaulton Holden-Wiltse Huyck Ma | J. Dutra | Jehan Nicholas E. Pascal Jennifer E. Roby P. Katharine E Alladina Banovich Barbry Beane Bhattacharyy | T. Desai | Diane Z. Ding | M. Koenigshoff | Ivan O Rosas | D. Fine | Sarah A Mazzilli | M. Luecken | Carly G. K. Ziegler | Kasidet Manakongtreecheep | K. Bassler

[1]  Keith Sigel,et al.  An inflammatory cytokine signature predicts COVID-19 severity and survival , 2020, Nature Medicine.

[2]  W. Zuo,et al.  Single-Cell RNA Expression Profiling of ACE2, the Receptor of SARS-CoV-2 , 2020, American journal of respiratory and critical care medicine.

[3]  P. Ellinor,et al.  Myocyte-Specific Upregulation of ACE2 in Cardiovascular Disease , 2020, Circulation.

[4]  S. Lauer,et al.  Serology-informed estimates of SARS-COV-2 infection fatality risk in Geneva, Switzerland , 2020, medRxiv.

[5]  Lisa E. Gralinski,et al.  SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract , 2020, Cell.

[6]  B. Sarikaya More on Neurologic Features in Severe SARS-CoV-2 Infection. , 2020, The New England journal of medicine.

[7]  I. Amit,et al.  Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19 , 2020, Nature Medicine.

[8]  Fei-Ran Guo Smoking links to the severity of COVID‐19: An update of a meta‐analysis , 2020, Journal of medical virology.

[9]  Fabian J Theis,et al.  SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes , 2020, Nature Medicine.

[10]  F. Baldanti,et al.  Guillain–Barré Syndrome Associated with SARS-CoV-2 , 2020, The New England journal of medicine.

[11]  Jun Lyu,et al.  Specific ACE2 expression in small intestinal enterocytes may cause gastrointestinal symptoms and injury after 2019-nCoV infection , 2020, International Journal of Infectious Diseases.

[12]  A. S. Booeshaghi,et al.  Decrease in ACE2 mRNA expression in aged mouse lung , 2020, bioRxiv.

[13]  Roland Eils,et al.  SARS‐CoV‐2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells , 2020, The EMBO journal.

[14]  Jason M. Sheltzer,et al.  Cigarette Smoke Exposure and Inflammatory Signaling Increase the Expression of the SARS-CoV-2 Receptor ACE2 in the Respiratory Tract , 2020, bioRxiv.

[15]  Suresh Patel,et al.  COVID-19–associated Acute Hemorrhagic Necrotizing Encephalopathy: CT and MRI Features , 2020, Radiology.

[16]  Xiang Yao,et al.  Knowledge synthesis from 100 million biomedical documents augments the deep expression profiling of coronavirus receptors , 2020, bioRxiv.

[17]  J. Ludvigsson Systematic review of COVID‐19 in children shows milder cases and a better prognosis than adults , 2020, Acta paediatrica.

[18]  Fabian J Theis,et al.  SARS-CoV-2 Receptor ACE2 is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Enriched in Specific Cell Subsets Across Tissues , 2020, SSRN Electronic Journal.

[19]  R. Lu,et al.  Detection of SARS-CoV-2 in Different Types of Clinical Specimens. , 2020, JAMA.

[20]  J. Xiang,et al.  Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study , 2020, The Lancet.

[21]  A. Walls,et al.  Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein , 2020, Cell.

[22]  Mirjana Efremova,et al.  CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes , 2020, Nature Protocols.

[23]  L. Mao,et al.  Neurological Manifestations of Hospitalized Patients with COVID-19 in Wuhan, China: a retrospective case series study , 2020, medRxiv.

[24]  Shuye Zhang,et al.  Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses , 2020, bioRxiv.

[25]  Wenling Wang,et al.  The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice , 2020, Nature.

[26]  Yan Zhao,et al.  Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. , 2020, JAMA.

[27]  Ting Yu,et al.  Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study , 2020, The Lancet.

[28]  Phillip A. Richmond,et al.  JASPAR 2020: update of the open-access database of transcription factor binding profiles , 2019, Nucleic Acids Res..

[29]  J. McAuley,et al.  The Role of the Cell Surface Mucin MUC1 as a Barrier to Infection and Regulator of Inflammation , 2019, Front. Cell. Infect. Microbiol..

[30]  Christoph Hafemeister,et al.  Comprehensive integration of single cell data , 2018, bioRxiv.

[31]  Michael J. T. Stubbington,et al.  Single-cell reconstruction of the early maternal–fetal interface in humans , 2018, Nature.

[32]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[33]  Alex K. Shalek,et al.  Allergic inflammatory memory in human respiratory epithelial progenitor cells , 2018, Nature.

[34]  Aviv Regev,et al.  A revised airway epithelial hierarchy includes CFTR-expressing ionocytes , 2018, Nature.

[35]  M. Schloter,et al.  Cholesterol metabolism promotes B‐cell positioning during immune pathogenesis of chronic obstructive pulmonary disease , 2018, EMBO molecular medicine.

[36]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[37]  William J. Greenleaf,et al.  chromVAR: Inferring transcription factor-associated accessibility from single-cell epigenomic data , 2017, Nature Methods.

[38]  中山 優吏佳 Cincinnati Children’s Hospital Medical Centerでの海外実習を終えて , 2017 .

[39]  Andrew D. Rouillard,et al.  Enrichr: a comprehensive gene set enrichment analysis web server 2016 update , 2016, Nucleic Acids Res..

[40]  Kun Zhang,et al.  Characterization of chromatin accessibility with a transposome hypersensitive sites sequencing (THS-seq) assay , 2016, Genome Biology.

[41]  P. Linsley,et al.  MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data , 2015, Genome Biology.

[42]  Andrew C. Adey,et al.  Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing , 2015, Science.

[43]  M. Jacomy,et al.  ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software , 2014, PloS one.

[44]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[45]  Skipper Seabold,et al.  Statsmodels: Econometric and Statistical Modeling with Python , 2010, SciPy.

[46]  K. Ligon,et al.  Myelin Gene Regulatory Factor Is a Critical Transcriptional Regulator Required for CNS Myelination , 2009, Cell.

[47]  G. Gilbert Linear Mixed Models: A Practical Guide Using Statistical Software , 2008 .

[48]  David K. Meyerholz,et al.  Lethal Infection of K18-hACE2 Mice Infected with Severe Acute Respiratory Syndrome Coronavirus , 2006, Journal of Virology.

[49]  S. Perlman,et al.  ACE2 Receptor Expression and Severe Acute Respiratory Syndrome Coronavirus Infection Depend on Differentiation of Human Airway Epithelia , 2005, Journal of Virology.

[50]  G. Navis,et al.  Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis , 2004, The Journal of pathology.